L’algorithme SAEM-MCMC est un outil puissant en vue de l’estimation des paramètres, par maximum de vraisemblance, dans les modèles non linéaires mixtes. Dans cet article, nous proposons une adaptation de cet algorithme pour estimer les paramètres dans le cadre des modèles linéaires mixtes à variances hétérogènes. Nous considérons, ici, deux modélisations possibles des variances : un modèle structural (incluant des effets fixes et aléatoires) basé sur les log-variances et un modèle s’appuyant sur une liaison moyenne-variance. En comparaison à d’autres procédures mises en œuvre dans les logiciels R, SAS et Monolix, notre algorithme s’avère beaucoup plus flexible pour modéliser des fonctions de variance. L’algorithme que nous proposons a été numériquement validé dans le cas d’un modèle linéaire mixte à variances hétérogènes en comparant les résultats obtenus avec ceux relatifs à un algorithme EM analytique sur le jeu de données standard de Pothoff et Roy. Enfin, nous présentons une application sur des données réelles concernant une expérience de sélection sur la croissance de poulets. Sur ces données, nous avons comparé les résultats de notre algorithme à ceux obtenus avec les procédures suivantes : SAS-NLMIXED, nlme, Monolix et WinBUGS.
The SAEM-MCMC algorithm is a powerful tool for computing maximum likelihood estimators in the wide class of nonlinear mixed effects models. We propose in this article an adaptation of this algorithm to the estimation of heterogeneous variances in such models. Two residual variance models are considered: a linear mixed model on the log-variance, with fixed and random effects, and a mean-variance relationship. As compared to other procedures implemented in R, SAS and Monolix, our algorithm provides more flexibility in modelling variance functions and reliability of the estimates. This algorithm was numerically validated in the case of a heteroskedastic linear mixed model by comparing its results with those of a standard EM algorithm applied to Pothoff and Roy’s data. Finally, an application to real data involving a selection experiment on growth in chickens is presented in which that algorithm was compared to results of SAS-Nlmixed, nlme, Monolix and WinBUGS softwares.
Keywords: heteroskedasticity, maximum likelihood estimation, nonlinear mixed models, SAEM-MCMC algorithm
Mots clés : Hétéroscédasticité, Maximum de vraisemblance, modèle non linéaire mixte, algorithme SAEM-MCMC
@article{JSFS_2009__150_2_65_0, author = {Duval, Myl\`ene and Robert-Grani\'e, Christ\`ele and Foulley, Jean-Louis}, title = {Estimation of heterogeneous variances in nonlinear mixed models via the {SAEM-MCMC} algorithm with applications to growth curves in poultry}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {65--83}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {150}, number = {2}, year = {2009}, mrnumber = {2609692}, zbl = {1311.62082}, language = {en}, url = {http://www.numdam.org/item/JSFS_2009__150_2_65_0/} }
TY - JOUR AU - Duval, Mylène AU - Robert-Granié, Christèle AU - Foulley, Jean-Louis TI - Estimation of heterogeneous variances in nonlinear mixed models via the SAEM-MCMC algorithm with applications to growth curves in poultry JO - Journal de la société française de statistique PY - 2009 SP - 65 EP - 83 VL - 150 IS - 2 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2009__150_2_65_0/ LA - en ID - JSFS_2009__150_2_65_0 ER -
%0 Journal Article %A Duval, Mylène %A Robert-Granié, Christèle %A Foulley, Jean-Louis %T Estimation of heterogeneous variances in nonlinear mixed models via the SAEM-MCMC algorithm with applications to growth curves in poultry %J Journal de la société française de statistique %D 2009 %P 65-83 %V 150 %N 2 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2009__150_2_65_0/ %G en %F JSFS_2009__150_2_65_0
Duval, Mylène; Robert-Granié, Christèle; Foulley, Jean-Louis. Estimation of heterogeneous variances in nonlinear mixed models via the SAEM-MCMC algorithm with applications to growth curves in poultry. Journal de la société française de statistique, Tome 150 (2009) no. 2, pp. 65-83. http://www.numdam.org/item/JSFS_2009__150_2_65_0/
[1] G.E. Battese and B.P. Bonyhady. Estimation of household expenditure functions: an application of a class of heteroscedastic regression models. The Economic Record, 57, 80-85, 1981.
[2] A. Blasco, M. Piles and L. Varona. A bayesian analysis of the effect of selection for growth rate on growth curves in rabbits. Genetics Selection Evolution, 35, 21-41, 2003.
[3] G.E.P Box and W.J. Hill. Correcting inhomogeneity of variances with power transformation wighting. Technometrics, 16, 385-389, 1974. | MR | Zbl
[4] W.J. Brown, D. Draper, H. Golstein and J. Rasbash. Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation. Computational Statistics and Data Analysis, 39, 203-225, 2002. | MR | Zbl
[5] 0. Cappé, A. Guillin, J.M. Marin and C.P. Robert.Population Monte Carlo. Journal of Computational and Graphical Statistics, 13, 907-929, 2004. | MR
[6] M. Davidian and J. Carroll. Variance Function Estimation. Journal of the American Statistical Association, 82, 1079-1091, 1987. | MR | Zbl
[7] M. Davidian and D.M. Giltinan.Nonlinear mixed models for repeated Measures Data. New York: Chapman and Hall, 1995.
[8] B. Delyon, M.Lavielle and E. Moulines. Convergence of a stochastic approximation version of the EM algorithm. Annals of Statistics, 27, 94-128, 1999. | MR | Zbl
[9] A.P. Dempster, N.M. Laird and D.B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39, 1-38, 1977. | MR | Zbl
[10] M. Duval and C. Robert-Granié. SAEM-MCMC: some criteria, 2007. http://hal.archives-ouvertes.fr/hal-00189580/fr/
[11] R.F. Engle. Autoregressive conditional heteroscedasticity with estimates of variance of united Kingdom inflations. Econometrica 50, 987-1008, 1982. | MR | Zbl
[12] J.L. Foulley, M. San Cristobal, D. Gianola and S. Im. Marginal likelihood and Bayesian approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models. Computational Statistics and Data Analysis, 13, 291-305, 1992. | Zbl
[13] J.L. Foulley and R.L. Quaas. Heterogeneous variances in Gaussian linear mixed models. Genetic Selection Evolution, 27, 211-228, 1995.
[14] A. Gelman and D.B. Rubin. Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511, 1992.
[15] H. Goldstein. Multilevel models in educational and social research. New York: Oxford University Press, 1987.
[16] F. Jaffrézic, G. Marot, S. Degrelle, I. Hue and J.L. Foulley. A structural mixed model for variances in differential gene expression studies. Genetical Research, 89, 19-25, 2007.
[17] R.I. Jenrich and M.D. Schulter. Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42, 805-820, 1986. | MR | Zbl
[18] G.G. Judge, W.E. Griffiths, R. Carter Hill, H. Lutkepohl and T.C. Lee. The theory and practice of econometrics. New-York: J Wiley and Sons, 1985. | MR
[19] E. Kuhn and M. Lavielle. Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM Probability and Statistics, 8, 115-131, 2004. | Numdam | MR | Zbl
[20] E. Kuhn and M. Lavielle. Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics and Data Analysis, 49, 1020-1038, 2005. | MR
[21] K. Lange. A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society, Serie B, 57(2), 425-437, 1995. | MR | Zbl
[22] Y. Lee and J.A. Nelder. Double hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society: Series C, 55, 139-180, 2006. | MR
[23] X. Lin, J. Ray and S.D. Harlow. Linear mixed models with heterogeneous within-cluster variances. Biometrics, 53, 910-923, 1997. | MR | Zbl
[24] M. Lindstrom and D. Bates. Nonlinear mixed effects models for repeated measures data. Biometrics, 44, 673-687, 1990. | MR
[25] R. Littell, G. Milliken, W. Stroup, R. Wolfinger and O. Schabenberger. SAS for Mixed Models. New York: SAS Institute, 2006.
[26] R.J.A Little and D.B. Rubin. Statistical analysis with missing data. New-York: Wiley and Sons, 1977. | MR | Zbl
[27] T.A. Louis. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society: Series B, 44, 226-233, 1982. | MR | Zbl
[28] J.C. Lu, D. Chen and W. Zhou. Quasi-likelihood estimation for GLM with random scales. Journal of Statistical Planning and Inference, 136, 401-429, 2006. | MR | Zbl
[29] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics. 11, 431-441, 1963. | MR | Zbl
[30] C.E. Mc Culloch. Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association, 92, 162-170, 1987. | MR | Zbl
[31] C. Meza, F. Jaffrézic and J.L. Foulley. REML estimation of variance parameters in nonlinear mixed effects models using SAEM algorithm. The Biometrical Journal, 49, 876-888, 2007. | MR
[32] S. Mignon-Grasteau, M. Piles, L. Varona, J.P. Poivey and A. Blasco. Genetic analysis of growth curve parameters for male and female chickens resulting from selection on shape of growth curve. Journal of Animal Science, 78, 2532-2531, 2000.
[33] J. Pan and R. Thompson. Quasi Monte Carlo estimation in generalized linear mixed models. Computational Statistics and Data analysis, 51, 5765-5775, 2006. | MR
[34] J.C. Pinheiro and D.M. Bates. Mixed-effects Models in S and S-PLUS. New York: Springer, 2000. | Zbl
[35] R.F. Pothoff and S.N. Roy. A generalized multivariate analysis of variance function useful especially for growth curve problems. Biometrika, 51, 313-326, 1964. | MR | Zbl
[36] R.A. Rigby and D.M. Stasinopoulos. Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54, 507-554, 2005. | MR
[37] C.P. Robert and G. Casella. Monte Carlo Statistical methods. New York: Springer, 2004. | MR
[38] L.B. Sheiner and S.L. Beal. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. Journal of pharmacokinetics and Biopharmaceutics, 8, 553-571, 1980.
[39] A.N. Tikhonov and V.A Arsenin. Solution of Ill-posed Problems, Winston & Sons, Washington, 1977. | MR | Zbl
[40] R.A. Torres. Markov chain Monte Carlo methods for estimating the covariance structure of longitudinal data - an application to dairy cattle. PhD thesis, Cornell University, 2001.
[41] G. Verbeke and G. Molenberghs. Linear models for longitudinal data. New York: Springer Verlag, 1999. | MR
[42] R.D. Wolfinger. Laplacian’s approximation for nonlinear mixed models. Biometrika, 80, 791-795, 1993. | MR | Zbl