Pattern-mixture models
Journal de la Société française de statistique, Tome 145 (2004) no. 2, pp. 49-77.
@article{JSFS_2004__145_2_49_0,
     author = {Molenberghs, Geert and Thijs, Herbert and Michiels, Bart and Verbeke, Geert and Kenward, Michael G.},
     title = {Pattern-mixture models},
     journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique},
     pages = {49--77},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {145},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2004__145_2_49_0/}
}
TY  - JOUR
AU  - Molenberghs, Geert
AU  - Thijs, Herbert
AU  - Michiels, Bart
AU  - Verbeke, Geert
AU  - Kenward, Michael G.
TI  - Pattern-mixture models
JO  - Journal de la Société française de statistique
PY  - 2004
SP  - 49
EP  - 77
VL  - 145
IS  - 2
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2004__145_2_49_0/
LA  - en
ID  - JSFS_2004__145_2_49_0
ER  - 
%0 Journal Article
%A Molenberghs, Geert
%A Thijs, Herbert
%A Michiels, Bart
%A Verbeke, Geert
%A Kenward, Michael G.
%T Pattern-mixture models
%J Journal de la Société française de statistique
%D 2004
%P 49-77
%V 145
%N 2
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2004__145_2_49_0/
%G en
%F JSFS_2004__145_2_49_0
Molenberghs, Geert; Thijs, Herbert; Michiels, Bart; Verbeke, Geert; Kenward, Michael G. Pattern-mixture models. Journal de la Société française de statistique, Tome 145 (2004) no. 2, pp. 49-77. http://www.numdam.org/item/JSFS_2004__145_2_49_0/

Allison P.D. (1987). Estimation of linear models with incomplete data. Sociology Methodology, 71-103.

Cohen J. and Cohen P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences. (2nd ed.). Hillsdale, NJ: Erlbaum.

Diggle P.J. and Kenward M.G. (1994). Informative drop-out in longitudinal data analysis (with discussion). Applied Statistics, 4 3 , 49-93. | Zbl

Draper D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, Séries B, 57, 45-97. | MR | Zbl

Ekholm A. and Skinner C. (1998). The muscatine children's obesity data reanalysed using pattern mixture models. Applied Statistics, 4 7 , 251-263.

Glynn R.J., Laird N.M. and Rubin D.B. (1986). Selection Modelling versus mixture modelling with nonignorable nonresponse. In Drawing Inferences from Self-Selected Samples, Ed. H. Wainer, pp. 115-142. New York: Springer Verlag.

Goss P.E., Winer E.P., Tannock I.F., Schwartz L.H. and Kremer A.B. (1999). A randomized phase III trial comparing the new potent and selective third-generation aromatase inhibitor vorozole with megestrol acetate in post-menopausal advanced breast cancer patients. Journal of Clinical Oncology, 17, 52-63.

Hedeker D. and Gibbons R.D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2, 64-78.

Hogan J.W. and Laird N.M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine, 16, 239-258.

Kenward M.G. and Molenberghs G. (1999). Parametric models for incomplete continuous and categorical longitudinal studies data. Statistical Methods in Medical Research, 8, 51-83.

Kenward M.G., Molenberghs G. and Thijs H. (2003). Pattern-mixture models with proper time dependence. Biometrika, 90, 53-71. | MR | Zbl

Laird N.M. (1994). Discussion to Diggle P.J. and Kenward M.G.: Informative dropout in longitudinal data analysis. Applied Statistics, 43, 84. | Zbl

Little R.J.A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 8 8 , 125-134. | Zbl

Little R.J.A. ( 1994a). A class of pattern-mixture models for normal incomplete data. Biometrika, 8 1 , 471-483. | MR | Zbl

Little R.J.A. ( 1994b). Discussion to Diggle P.J. and Kenward M.G.: Informative dropout in longitudinal data analysis. Applied Statistics, 43, 78. | Zbl

Little R.J.A. (1995). Modelling the dropout mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121. | MR | Zbl

Little R.J.A. and Rubin D.B. (1987). Statistical Analysis with Missing Data. New York: Wiley. | MR | Zbl

Little R.J.A. and Wang Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates. Biometrics, 52, 98-111. | Zbl

Mcardle J.J. and Hamagami F. (1992). modelling incomplete longitudinal and cross-sectional data using latent growth structural models. Experimental Aging Research, 18, 145-166.

Minini P. and Chavance M. ( 2004a). Observations longitudinales incomplètes : de la modélisation des observations disponibles à l'analyse de sensibilité. Journal de la Société française de Statistique, 145, 2, 5-18. | EuDML

Minini P. and Chavance M. ( 2004b). Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics, 5, 531-544. | Zbl

Molenberghs G., Kenward M. G. and Lesaffre E. (1997). The analysis of longitudinal ordinal data with non-random dropout. Biometrika, 84, 33-44. | Zbl

Molenberghs G., Michiels B. and Kenward M.G. (1998). Pseudo-likelihood for combined selection and pattern-mixture models for missing data problems. Biometrical Journal, 40, 557-572. | Zbl

Molenberghs G., Michiels B., Kenward M.G. and Diggle P.J. (1998). Missing data mechanisms and pattern-mixture models. Statistica Neerlandica, 52, 153-161. | MR | Zbl

Molenberghs G., Michiels B. and Lipsitz S.R. (1999). Selection models and pattern-mixture models for incomplete categorical data with covariates. Biometrics, 55, 978-983. | Zbl

Muthén B., Kaplan D. and Hollis M. (1987). On structural equation modelling with data that are not missing completely at random. Psychometrika, 52, 431-462. | Zbl

Nelder J.A. and Mead R. (1965). A simplex method for function minimisation. The Computer Journal, 7, 303-313. | Zbl

Reisberg B., Borenstein J., Salob S.P., Ferris S.H., Franssen E. and Georgotas A. (1987). Behavioral symptoms in Alzheimer's disease: phenomenology and treatment. Journal of Clinical Psychiatry, 48, 9-13.

Rubin D.B. (1976). Inference and missing data. Biometrika, 6 3 , 581-592. | MR | Zbl

Rubin D.B. (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley and Sons, New York. | MR

Rubin D.B. (1994). Discussion to Diggle, P.J. and Kenward, M.G.: Informative dropout in longitudinal data analysis. Applied Statistics, 43, 80-82. | Zbl

Schafer J.L. (1997). Analysis of incomplete multivariate data. London: Chapman and Hall. and Hall. | MR | Zbl

Schipper H., Clinch J. and Mcmurray A. (1984). Measuring the quality of life of cancer patients: the Functional-Living Index-Cancer: development and validation. Journal of Clinical Oncology, 2, 472-483.

Sheiner L.B., Beal S.L. and Dunne A. (1997). Analysis of nonrandomly censored ordered categorical longitudinal data from analgesie trials. Journal of the American Statistical Association, 92, 1235-1244. | Zbl

Shih W.J. and Quan H. (1997). Testing for treatment differences with dropouts present in clinical trials - A composite approach. Statistics in Medicine, 16, 1225-1239.

Thijs H., Molenberghs G., Michiels B., Verbeke G. and Curran D. (2002). Strategies to fit pattern-mixture models. Biostatistics, 3, 245-265. | Zbl

Verbeke G. and Molenberghs G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer-Verlag. | MR | Zbl

Wu M.C. and Bailey K.R. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics 45, 939-55. | MR | Zbl