@article{JSFS_2003__144_4_25_0, author = {Paindaveine, Davy}, title = {Proc\'edures optimales fond\'ees sur les rangs multivari\'es}, journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique}, pages = {25--66}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {144}, number = {4}, year = {2003}, language = {fr}, url = {http://www.numdam.org/item/JSFS_2003__144_4_25_0/} }
TY - JOUR AU - Paindaveine, Davy TI - Procédures optimales fondées sur les rangs multivariés JO - Journal de la Société française de statistique PY - 2003 SP - 25 EP - 66 VL - 144 IS - 4 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2003__144_4_25_0/ LA - fr ID - JSFS_2003__144_4_25_0 ER -
Paindaveine, Davy. Procédures optimales fondées sur les rangs multivariés. Journal de la Société française de statistique, Tome 144 (2003) no. 4, pp. 25-66. http://www.numdam.org/item/JSFS_2003__144_4_25_0/
[1] Time Series: Theory and Methods, Springer, New York. | MR | Zbl
et (1987),[2] Asymptotic normality and efficiency of certain nonparametric tests, Ann. Math. Statist. 29, 972-994. | MR | Zbl
et (1958),[3] Asymptotically uniformly most powerful tests in parametric and semiparametric models, Ann. Statist. 24, 841-861. | MR | Zbl
, et (1996),[4] Local asymptotic normality of multivariate ARMA processes with a linear trend, Ann. Inst. Statist. Math. 47, 551-579. | MR | Zbl
et (1995),[5] Rank-based AR order identification, J. Amer. Statist. Assoc. 94, 1357-1371. | MR | Zbl
et (1999),[6] Éléments de Statistique asymptotique, Springer-Verlag, Paris. | MR | Zbl
et (1993),[7] Non-stationary q-dependent processes and time-varying moving-average models: invertibility properties and the forecasting problem, Adv. Appl. Prob. 18, 170-210. | MR | Zbl
(1986),[8] On the Pitman-nonadmissibility of correlogram-based methods, Jour. Time Series Anal. 15, 607-612. | MR | Zbl
(1994),[9] Linear serial rank tests for randomness against ARMA alternatives, Ann. Statist. 13, 1156-1181. | MR | Zbl
, et (1985),[10] Asymptotically most powerful rank tests for multivariate randomness against seriai dependence, J. Multivariate Anal. 30, 34-71. | MR | Zbl
, et (1989),[11] Rank-based tests for randomness against first-order serial dependence, J. Amer. Statist. Assoc. 83, 1117-1128. | MR
et (1988),[12] Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks, Ann. Statist. 30, 1103-1133. | MR | Zbl
et ( 2002a),[13] Optimal procedures based on interdirections and pseudo-Mahalanobis ranks for testing multivariate elliptic white noise against ARMA dependence, Bernoulh 8, 787-816. | MR | Zbl
et ( 2002b),[14] Multivariate signed ranks: Randles' interdirections or Tyler's angles? In Y. Dodge, Ed., Statistical Data Analysis Based on the L1 Norm and Related Procedures, Birkhauser, Basel, 271-282. | MR | Zbl
et ( 2002c),[15] Affine invariant linear hypotheses for the multivariate general linear model with VARMA error terms. In M. Moore, S. Froda, and Chr. Léger, Eds, Mathematical Statistics and Applications : Festschrift for Constance van Eeden, I.M.S. Lecture Notes-Monograph Series, I.M.S., Hayward, California, 417-434. | MR
et (2003),[16] Rank-based optimal tests of the adequacy of an elliptic VARMA model, Ann. Statist, à paraître. | MR | Zbl
et ( 2004a),[17] Asymptotic linearity of serial and nonserial multivariate signed rank statistics, soumis. | Zbl
et ( 2004b),[18] Affine invariant aligned rank tests for the multivariate general linear model with ARMA errors, J. Multivariate Anal., à paraître. | MR | Zbl
et ( 2004c),[19] Multivariate signed rank tests in vector autoregressive order identification, Statistical Science, à paraître. | MR | Zbl
et ( 2004d),[20] Optimal rank-based procedures for time-series analysis: testing an ARMA model against other ARMA models, Ann. Statist. 16, 402-432. | MR | Zbl
et (1988),[21] Time-series analysis via rank-order theory: signed-rank tests for ARMA models, J. Multivariate Anal. 39, 1-29. | MR | Zbl
et (1991),[22] Aligned rank tests for linear models with autocorrelated error terms, J. Multivariate Anal. 50, 175-237. | MR | Zbl
et (1994),[23] A multivariate Wald-Wolfowitz rank test against serial dependence, Canadian J. Statist. 23, 55-65. | MR | Zbl
et (1994),[24] The efficiency of some nonparametric competitors to correlogram-based methods. In F.T. Bruss and L. Le Cam, Eds, Game Theory, Optimal Stopping, Probability, and Statistics, Papers in honor of T. S. Ferguson on the occasion of his 70th birthday, I.M.S. Lecture Notes-Monograph Series, I.M.S., Hayward, California, 249-262. | MR | Zbl
et (2000),[25] Optimal testing for semi-parametric AR models: from Gaussian Lagrange multipliers to autoregression rank scores and adaptive tests. In S. Ghosh, Ed., Asymptotics, Nonparametrics, and Time Series, M. Dekker, New York, 295-350. | MR | Zbl
et (1999),[26] Semiparametric efficiency, distribution-freeness, and invariance, Bernoulli 9, 55-65. | MR | Zbl
et (2003),[27] Multiple Time series, J. Wiley, New York. | MR | Zbl
(1970),[28] Affine invariant multivariate one-sample sign tests, J. Roy. Statist. Soc. Ser. B 56, 221-234. | MR | Zbl
, et (1994),[29] Affine invariant multivariate one-sample signed-rank tests, J. Amer. Statist. Assoc. 92, 1591-1600. | MR | Zbl
, et (1997),[30] The efficiency of some nonparametric competitors of the t-test, Ann. Math. Statist. 27, 324-335. | MR | Zbl
et (1956),[31] Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York. | MR | Zbl
(1986),[32] Multivariate spatial sign and rank methods, J. Nonparam. Statist. 5, 201-213. | MR | Zbl
et (1995),[33] On the efficiency of multivariate spatial sign and rank methods, Ann. Statist. 25, 542-552. | MR | Zbl
, et (1997),[34] On the efficiency of the multivariate affine invariant rank methods, J. Multivariate Anal. 66, 118-132. | MR | Zbl
, , et (1998),[35] Affine invariant multivariate sign and rank tests and corresponding estimates: a review, Scand. J. Statist. 26, 319-343. | MR | Zbl
(1999),[36] Optimal testing procedures based on hyperplanes, soumis.
et (2004),[37] A multivariate signed-rank test for the one-sample location problem, J. Amer. Statist. Assoc. 85, 552-557. | MR | Zbl
et (1990),[38] Nonparametric Methods in Multivariate Analysis, J. Wiley, New York. | MR | Zbl
et (1971),[39] A distribution-free multivariate sign test based on interdirections, J. Amer. Statist. Assoc. 84, 1045-1050. | MR | Zbl
(1989),[40] A simpler, affine-invariant, multivariate, distribution-free sign test, J. Amer. Statist. Assoc. 95, 1263-1268. | MR | Zbl
(2000),[41] Nonparametric tests for the multivariate multisample location problem, Statistica Sinica 8, 801-812. | MR | Zbl
et (1998),[42] A distribution-free M-estimator of multivariate scatter, Ann. Statist. 15, 234-251. | MR | Zbl
(1987),