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LONG MEMORY IN ECONOMICS 
DISCUSSION AND COMMENTS 

Joann JASIAK* 

1. INTRODUCTION 

The paper by Lardic and Mignon provides an extensive overview of literature 
on long memory models, their estimation and applications. The authors hâve 
given considérable attention to various empirical papers documenting long 
memory in économie and fînancial data. A common method of preliminary 
assessment of long memory in the data relies on the principle that "...the 
présence of long memory [in the séries of stock returns] is indicated by 
significant autocorrélations at long lags..." [see section 5.1.2.1]. Indeed long 
memory is commonly inferred from a slow, hyperbolic decay pattern of the 
estim'ated autocorrrelation fonction (ACF henceforth). However the behavior 
of empirical ACF's may, to some extent, be determined by factors other than 
a highly persistent linear structure of the observed dynamics. There is, for 
example, a growing concern about spurious effects of long memory due to 
nonlinearities [see the comment by C. Gourieroux, and références therein]. In 
contrast, there seems to be very little awareness among researchers about the 
quality of commonly used estimators of autocorrélations. Fd like to address 
thèse two issues in my comment. It contains preliminary numerical results, 
which are not rigorous and are rather intended to provide some insights on 
the nature of the observed long memory. 

2. THE STRONG VS WEAK NOISE ASSUMPTION 

Many long memory models and estimation methods rely on the assumption 
of a strong white noise error term. Let us examine to what extent the ACF of 
a long memory process can be altered by relaxing the assumption of a strong 
white noise. For this purpose we design a simple simulation experiment in 
which we generate two trajectories of the process {yt}, where : 

Yt = (l-L)del 
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In the first experiment the process is generated from an i.i.d. standard normal 
séquence {et} representing a strong white noise process, e^ = et. Thus our 
first sample contains realizations of yt = (1 - L)det. 

In the second experiment we transform the strong white noise {et} into a 
weak white noise {et} by inducing sériai corrélation in the squares. The weak 
noise is defined as et = 0"t£t, where the conditional variance G\ = Et-\{e1) is 
modelled as : 

a\ =0 .1 + 0 . 5 4 ^ . 

We generate the second sample by setting e\ = et and Computing yt = 
(1 - L)%. 
Both noise processes et and et used to generate {yt} were adjusted to hâve 
equal marginal means and variances. 

We set the fractional intégration parameter d equal to 0.45, and truncate the 
infinité polynomial approximation at 3000 terms. In each sample, the first 
8000 out of the initial 9000 simulated realizations of {yt} are discarded, so 
that two samples of length 1000 are used for further analysis. 

Figure 1 displays the autocorrélation functions at lags 1 through 100, estima-
ted by Splus. The solid Une represents the ACF for the process generated from 
the strong noise, while the dotted Une represents the ACF of the weak noise 
based process. Compared to the ACF of the strong process, the "weak" ACF 
takes larger values over short and intermediate lags, and decays at a slightly 
faster although hyperbolic rate, up to, approximately lag 70. At high lags, 
the weak process shows a stable pattern, of very persistent and low valued 
autocorrélations, often reported in financial data1 . 

The numerical différences between the two ACF's at lags 1 to 10 can be 
observed from Table 1 given in the Appendix. Column 1 represents the "weak" 
ACF values while column 2 gives the "strong" ACF's. 

The différences in the ACF patterns suggest that basic estimators of the 
coefficient of fractional intégration d may not produce similar outcomes in 
both samples. In the first two columns of Table 2 shown in the Appendix we 
report the estimâtes of d, (along with standard errors in parenthèses) obtained 
from the following two methods. 

The first one is the Porter-Hudak method [Geweke, Porter-Hudak (1983)], 
where we estimate the periodogram from a Fourier transform of autocorréla
tions, as most software packages do. We use 100 autocorrélations, and retain 
20 first components of the periodogram for the final régression 

The second method [referred to as "Granger régression"] [Ding, Engle, Gran-
ger (1993)] consists in estimating d from a régression of log autocorrélations 
on a constant and a logarithm of the lag. It is valid for large lags only. The 
value of d is obtained by adding 0.5 to the régression coefficient on the lag 
logarithm. 

1. Note that this experiment is not intended to produce rigorous results. More replications 
are necessary to draw final conclusions. 
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We see that the Porter Hudak method underestimates the true d in the weak 
noise model, while the estimate is quite accurate in the strong noise model. 
The régression method performs correctly in the strong noise model as well, 
and fails totally in the weak noise model. It seems that a régression on lags 
higher than 100 would provide a better resuit. 

3. ACCURACY OF ACF ESTIMATORS 

We now extend our analysis to examine the performance of autocorrélation 
estimators provided by commonly used software packages. 

We considered the following programs : 

1) S-PLUS : Copyright (c) 1988, 1999 MathSoft, Inc., Version 5.1 Release 1 
for IBM RS/6000, AIX 4.3.1 : 1999 

2) SAS Copyright (c) 1989-1996 by SAS Institute Inc., Cary, NC, USA. 
Proprietary Software Release 6.12 TS020. 

3) GAUSS Version 3.2.40 (Jun 1 1998) (C) Copyright 1984-1997 Aptech 
Systems, Inc. Maple Valley, WA 

4) TSP version 4.3A, Copyright (c) 1995 TSP International, 5) RATS version 
4.2 WinRats, run on a DELL celeron PC. 

We estimated 100 autocorrélations from 1000 simulated realizations of the 
strong noise based long memory model. Figure 2 displays the estimated ACF's. 
Three distinct autocorrélation patterns seem to émerge from this experiment. 
The autocorrélation function with highest values, plotted by a dotted line is 
provided by GAUSS. The one below, indicated by a solid line represents the 
ACF by Splus. The ACF's estimated from SAS, TSP and RATS overlap in 
this figure and give the lowest (dashed) curve of ACF, admitting négative 
values, in contrast to Splus and GAUSS. 
We can observe the numerical différences in autocorrélations at lags 1 through 
10 again in Table 2 by comparing the results in columns 2 : 6 . 

The distinct autocorrélation patterns can now be used to examine the sen-
sitivity of the two aforementioned d estimators. The results are reported in 
Table 2, columns 2 to 6. 
Let us first consider the Porter-Hudak estimator. As expected the estimâtes 
of d from autocor relations computed by SAS, TSP and RATS are very close. 
They ail are slightly overestimated. They also differ from the d estimate from 
Splus (closest to the true value), and the one by GAUSS, which slightly 
underestimates the true value. 
The Granger régression can not be applied to neither SAS,TSP, nor RATS 
autocorrélations due to the présence of many négative autocorrélations at long 
lags. It gives a quite accurate resuit for Splus, and a slightly worse resuit for 
GAUSS. 
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It might be insightful at this point to explore one of the potential sources of 
ambiguity in Computing autocorrélations. Anybody who has ever attempted to 
program an autocorrélation estimator at lag k has probably faced the following 
dilemmas : 

1) Should T (the sample size) or rather (T - k) appear in the numerator? 
Or, in other words, should the small sample or the asymptotic theory be 
followed ? 

2) Should the variance in the denominator be computed using T or T — 1 as 
divisor ? Or should a product of two standard déviations, one for yt and 
one for yt-k be computed instead. If yes, should T, T — /c, or T — k — 1 be 
used as divisors ? Where, when and why ? 

It appears that depending on the purpose of research, and personal needs, 
various permutations of the above could help to reach the desired conclusion 
on long memory. One can artificially "lift up" the autocorrélations, creating 
a stronger persistence, or do the opposite to reduce the memory. Obviously 
this works to some extent only. The choice of estimator can hâve however a 
very strong effect on autocorrélations at large lags. 
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TABLE 1. — Autocorrélations for lags 1 to 10 

WEAK NOISE 

Splus 

0.6767 

0.5848 

0.5238 

0.5125 

0.4892 

0.4657 

0.4223 

0.4502 

0.4492 

0.4197 

STRONG NOISE 

Splus 

0.6262 

0.4945 

0.4477 

0.4170 

0.3780 

0.3349 

0.2969 

0.2841 

0.3118 

0.2873 

SAS 

0.5734 

0.4497 

0.3912 

0.3415 

0.2910 

0.2253 

0.2260 

0.1727 

0.1670 

0.1984 

GAUS 

0.6647 

0.5674 

0.5215 

0.4823 

0.4419 

0.3899 

0.3901 

0.3483 

0.3430 

0.3676 

TSP 

0.5730 

0.4500 

0.3910 

0.3420 

0.2910 

0.2250 

0.2260 

0.1730 

0.1670 

0.1980 

RATS 

0.5734 

0.4497 

0.3912 

0.3415 

0.2910 

0.2253 

0.2260 

0.1727 

0.1670 

0.1984 

TABLE 2. — Estimation of d 

WEAK NOISE 

Splus 

STRONG NOISE 

Splus SAS GAUS TSP RATS 

Porter Hudak 

0.3635 

(0.0436) 

0.4458 

(0.0543) 

0.4874 

(0.0590) 

0.4143 

(0.0437) 

0.4878 

(0.0590) 

0.4873 

(0.0590) 

G ranger régression 

aberr. 0.4650 

(0.1123) 

lag 60 :100 

N.A. 0.4936 

(0.0659) 

lag 40 :100 

N.A. N.A. 
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FIGURE 1. — ACF estimâtes for the strong and weak y(t) 
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FIGURE 2. — ACF estimâtes from software packages 
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