@article{JSFS_1999__140_1_41_0, author = {Biau, G\'erard}, title = {Estimateurs \`a noyau it\'er\'es : synth\`ese bibliographique}, journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique}, pages = {41--67}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {140}, number = {1}, year = {1999}, language = {fr}, url = {http://www.numdam.org/item/JSFS_1999__140_1_41_0/} }
TY - JOUR AU - Biau, Gérard TI - Estimateurs à noyau itérés : synthèse bibliographique JO - Journal de la Société française de statistique PY - 1999 SP - 41 EP - 67 VL - 140 IS - 1 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_1999__140_1_41_0/ LA - fr ID - JSFS_1999__140_1_41_0 ER -
Biau, Gérard. Estimateurs à noyau itérés : synthèse bibliographique. Journal de la Société française de statistique, Tome 140 (1999) no. 1, pp. 41-67. http://www.numdam.org/item/JSFS_1999__140_1_41_0/
[1] An approximation to the density function. Annals of the Institute of Statistical Mathematics, 6 : 127-132. | MR | Zbl
(1954).[2] Estimation d'une densité : un point sur la méthode du noyau. Statistique et Analyse des Données, 14 : 1-32.
et (1989).[3] A comparison of kernel density estimates. Publications de l'Institut de Statistique de l'Université de Paris, 38 : 3-59. | MR | Zbl
et (1994).[4] From model selection to adaptative estimation. In Festschrift for LeCam, 55-87. New York : Springer-Verlag. | MR | Zbl
et (1997).[5] Théorie de l'Estimation Fonctionnelle. Paris : Economica.
et (1987).[6] An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71 : 353-360. | MR
(1984).[7] A data dependent approach to density estimation. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 69 : 609-628. | MR | Zbl
(1985).[8] A comparative study of several smoothing methods in density estimation. Computational Statistics and Data Analysis, 17 : 153-176. | Zbl
, et (1994).[9] Bandwith selection for kernel density estimation. The Annals of Statistics, 19 : 1883-1905. | MR | Zbl
(1991).[10] An automatic bandwith selector for kernel density estimation. Biometrika, 79 : 771-782. | MR | Zbl
(1992).[11] Consistent cross-validated density estimation. The Annals of Statistics, 11 : 25-38. | MR | Zbl
, et (1983)[12] Conditions nécessaires et suffisantes de convergence ponctuelle presque sûre et uniforme presque sûre des estimateurs de la densité. Comptes Rendus Mathématiques de l'Académie des Sciences de Paris, 278 : 1217-1220. | MR | Zbl
(1974).[13] Estimation non paramétrique de la densité par histogrammes généralisés. Revue de Statistique Appliquée, 25 : 5-42. | MR
(1977).[14] Estimation automatique de la densité. Revue de Statistique Appliquée, 28 : 25-55. | Numdam | MR | Zbl
et (1980)[15] A Course m Density Estimation. Boston : Birkhauser. | Zbl
(1987).[16] A universal lower bound for the kernel estimate. Statistics and Probability Letters, 8 : 419-423. | MR | Zbl
(1989).[17] On good deterministic smoothing sequences for kernel density estimates. The Annals of Statistics, 22 : 886-889. | MR | Zbl
(1994).[18] Universal smoothing factor selection in density estimation : theory and practice. Test, 6 : 223-320. | MR | Zbl
(1997).[19] Nonparametric Density Estimation the L1 View. New York : Wiley. | MR
et (1985)[20] A universally acceptable smoothing factor for kernel density estimates. The Annals of Statistics, 24 : 2499-2512. | MR | Zbl
et (1996).[21] Nonasymptotic universal smoothing factors, kernel complexity, and Yatracos classes. The Annals of Statistics, 25 : 2626-2637. | MR | Zbl
et (1997).[22] On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Transactions on Computers, 25 : 1175-1179. | Zbl
(1976)[23] An iterative bandwith selector for kernel estimation of densities and their derivatives. Journal of Nonparametric Statistics, 4 : 21-34. | MR
, et (1994)[24] Best possible constant for bandwith selection. The Annals of Statistics, 20 : 2057-2070. | MR | Zbl
et (1992).[25] Local adaptivity of kernel estimates with plug-in local bandwith selectors. Board of the Foundation of the Scandmavian Journal of Statistics, 25 : 503-520. | MR | Zbl
et (1998).[26] A stepwise discriminant analysis program using density estimation. In Compstat, ed. G. Bruckmann, 101-110. Wien : Physica-Verlag. | MR
, et (1974).[27] Cross-validation in density estimation. Biometrika, 69 : 383-390. | MR | Zbl
(1982).[28] Large-sample optimality of least squares cross-validation in density estimation. The Annals of Statistics, 11 : 1156-1174. | MR | Zbl
(1983).[29] Asymptotic theory of minimum integrated square error for multivariate density estimation. In Multwariate Analysis VI, ed. Krishnaiah, 289-309. Amsterdam . North-Holland. | MR | Zbl
(1985).[30] On plug-in rules for local smoothing of density estimators. The Annals of Statistics, 21 : 694-710. | MR | Zbl
(1993).[31] Estimation of integrated squared density derivatives. Statistics and Probability Letters, 6 : 109-115. | MR | Zbl
et ( 1987a).[32] Extent to which least squares cross-validation minimises integrated square error in nonparametric density estimation. Probability Theory and Related Fields, 74 : 567-581. | MR | Zbl
et ( 1987b).[33] On the amount of noise inherent in bandwith selection of a kernel density estimator. The Annals of Statistics, 15 : 163-181. | MR | Zbl
et ( 1987c).[34] Local minima in cross-validation functions. Journal of the Royal Statistical Association, B53 : 245-252. | MR | Zbl
et ( 1991a).[35] Lower bounds for bandwith selection in density estimation. Probability Theory and Related Fields, 90 : 149-173. | MR | Zbl
et ( 1991b).[36] Smoothed cross-validation. Probability Theory and Related Fields, 92 : 1-20. | MR | Zbl
, et (1992).[37] On optimal data-based bandwith selection in kernel density estimation Biometrika, 78 : 263-269. | MR | Zbl
, , et (1991).[38] Minimizing L1 distance in nonparametric density estimation. Journal of Multivariate Analysis, 26 : 59-88. | MR | Zbl
et (1988).[39] A simple root n bandwith selector. The Annals of Statistics, 19 : 1919-1932. | MR | Zbl
, et (1991).[40] Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letters, 11 : 511-514. | MR | Zbl
et (1991).[41] Asymptotically best bandwith selectors in kernel density estimation. Statistics and Probability Letters, 19 : 119-127. | MR | Zbl
, et (1994).[42] An asymptotically efficient solution to the bandwith problem of kernel density estimation. The Annals of Statistics, 13 : 1011-1023. | MR | Zbl
(1985).[43] A comparison of cross-validation techniques in density estimation. The Annals of Statistics, 15 : 152-162. | MR | Zbl
(1987).[44] Automatic smoothing parameter selection : a survey. Empirical Economics, 13 : 187-208.
(1988).[45] Comments on a data-based bandwith selector. Computational Statistics and Data Analysis, 8 : 155-170. | MR | Zbl
(1989)[46] Bootstrap bandwith selection. In Exploring the Limits of Bootstrap, ed. R. le Page et L. Billard, 249-262. New York : Wiley. | MR | Zbl
(1992).[47] On the integral mean square error of some nonparametric estimates for the density function. Theory of Probability and its Applications, 19 : 133-141. | Zbl
(1974).[48] On the plug-in bandwith selectors in kernel density estimation. Journal of the Korean Statistical Society, 18 : 107-117. | MR
(1989).[49] Comparison of data-driven bandwith selectors. Journal of the American Statistical Association, 85 : 66-72.
et (1990).[50] On the use of pilot estimators in bandwith selection. Journal of Nonparametric Statistics, 1 : 231-240. | MR
et (1992).[51] On the estimation of a probability density function and the mode. The Annals of Mathematical Statistics, 33 : 1065-1076. | MR | Zbl
(1962).[52] Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27 : 832-837. | MR | Zbl
(1956).[53] Curve estimates. The Annals of Mathematical Statistics, 42 : 1815-1842. | MR | Zbl
(1971).[54] Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9 : 65-78. | MR | Zbl
(1982).[55] On the nonconsistency of maximum likelihood nonparametric density estimators. In Computer Science and Statistics : Proceedings of the 13th Symposium on the Interface, ed. W.F. Eddy, 295-298. New York : Springer Verlag. | MR
et (1981).[56] Averaged shifted histograms : effective nonparametric density estimators in several dimensions The Annals of Statistics, 13 : 1024-1040. | MR | Zbl
(1985).[57] Multivariate Density Estimation : Theory, Practice, and Visualisation. New York : Wiley. | MR | Zbl
(1992).[58] Monte Carlo study of three data-based nonparametric probability density estimators. Journal of the American Statistical Association, 76 : 9-15. | Zbl
et (1981).[59] Kernel density estimation revisited. Nonlinear Analysis, Theory, Methods and Applications, 1 : 339-372. | MR | Zbl
, et (1977).[60] Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82 : 1131-1146. | MR | Zbl
et (1987).[61] A data-based algorithm for choosing the window width when estimating the density at a point. Computational Statistics and Data Analysis, 1 : 229-238. | Zbl
(1983).[62] An improved data-based algorithm for choosing the window width when estimating the density at a point. Computational Statistics and Data Analysis, 4 : 61-65.
(1986).[63] A reliable data-based bandwith selection method for kernel density estimation. Journal of the Royal Statistical Society, B53 : 683-690. | MR | Zbl
et (1991).[64] Density Estimation for Statistics and Data Analysis. London : Chapman and Hall. | MR | Zbl
(1986).[65] Smoothing Methods in Statistics. New York : Springer-Verlag. | MR | Zbl
(1996).[66] An asymptotically optimal window selection rule for kernel density estimates. The Annals of Statistics, 12 : 1285-1297. | MR | Zbl
(1984)[67] Oversmoothed nonparametric density estimates. Journal of the American Statistical Association, 80 : 209-214. | MR
et (1985).[68] Bandwith selection in kernel density estimation : a review. Rapport technique, Université Catholique de Louvain.
(1993).[69] Quasi-universal bandwith selection for kernel density estimators A paraître dans The Canadian Journal of Statistics. | MR | Zbl
(1999).[70] On choosing a delta sequence. The Annals of Mathematical Statistics, 41 : 1665-1671. | MR | Zbl
(1970).