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II 2 C. TR UESDELL. 

18. H1sTORICAL INTRODUCTION. - The classical theory of isotropie 
viscous fluids rests upon the Newton (2 )-Cauchy-Poisson law 
(18.1) tiï==--pôij+ }dk1.:ôii+ 2p.ôij, 

where tij is t4e stress tensor, p is the pressure (3 ), À and p. are the 
coefficients of viscosity, and di1 is the rate of deformation tensor. The 
general theory is due to Navier ( 4 ), who by calculations based upon 
a molecular hypothesis derived dynamical equations equivalent to 
those resulting from ( i 8. 1) for an incompressible fluid of constant 
viscosity. lt is not certain that Cauchy intended his continuum 
presentation of ( 18. 1) to apply to fluids, for he spoke of " corps 
solides entièrement dépourvus d'élasticité " (5 ), " un corps solide non 
élastique " ( 6 ), and his equations ( 7) lack the term - p 8ï1. The 
full y general expression ( i 8. 1) was first given by Poisson ( 8 ), who 
derived it from a molecular theory. 

With the added restriction 3 À+ 2 p.== o, known as the " Stokes 
relation ", the law ( 18. 1) was proposed by Saint Venant ( 9) on the 
basis of continuum arguments, and to derive this same result 
Stokes CO) employed both continuum and rough molecular conside-
rations. The resulting dynamical equations are called the Navier-
Stokes equations. The classical theory was proposed as a first 
approximation, and there have been man y attempts to formula te 
more general equations. 

ln a rectilinear shearing flow ( 1 t ), according to { i8. 1) the shearing 
stress i-ry, and hence also the resistance, is proportional to the rate of 

( 2) According to Xewton [ 1687, 1, lib. II, sect. IX l, " Resistentiam, quae 
oritur ex defectu luhricitatis partium jluidi, cœteris paribus, proportionalem 
esse velocitati, qua partes fl uidi separantur ab in()icem n. 

( :i) See the Appendix to the preceding Memoir for the definition of pressure. 
(4) [1821, 1], [1822, 1], [1825, 1], [1827, 1]. 
( 5) [1823, 1]. 
(11) [" 1828, 1, § III]. Also, " I1élasticité disparaît entièrement ". 
(7) [1828, 1, équat. (95), (96)]. 
( 8) [ 183 1, 1, § 60-63 j. 
( 9) [1843, 1]. 
( 10 ) [1845, 1, § 1-5]. For Stokes's principle, see § 2oftheprecedingMemoir. 
(11)Cj.§12. 
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shearing d\. Since in many physical liquids this relation does not 
appear to be substantiated by experiment, a considerable engineering 
literature ( 12 ) of" non-Newtonian fluids ", in which c:Y is reprèsented 
as a polynomial· or power series in d\., has accumulated. These 
one-dimensional treatments can neither reveal nor reflect the charac-
teristic phenomena of non-linear continuum mechanics, and hence 
will not be discussed in the present Memoir. 

We must take account, however, of the remarkable earlier result. 
of O. E. Meyer (1 2 a ), who by an argument in the kinetic theory of 
gases for the special case of a rectilinear shearing flow obtained 

( 18. 1 a) [ 
3À2 <Px ] 

[Xy == [J- _ de).+ 5 dfl + • • • ' 

where À is the mean free path. Here for the first time appears a 
series expansion for a stress component in a fluid, and here also is the 
first suggestion that the stress should depend not only on dij but also 
on the higher velocity gradients. 

Kleitz ( 13
) proposed () 1

1 = / ( d 1
1 ), ()

1 
2 = /( d 1

2 ), ••• , a type of 
relation tensorially admissible onl y when .fis a linear fonction. 

Boussinesq ( 14
) was the first to show that the Newton-Cauchy-

Poisson law ( 18. 1) is merely the linear term in an infini te series for 
the viscous stresses. His concept of fluidity was somewhat more 
general than that embodied in Stokes's principle (§ 3 ), for while 
expressly stating that in a rigid rotation the viscous stresses must 
vanish, he nevertheless permitted the vorticity tùij to modify their 
magnitude in general. Thus the mathematical form of Boussl·nesq's 
principle is 
(18.2) 

( 12 ) The e:nliest reference I have found is [ 1869, 1], ,vhere Saint Venant 
attributes such a series to Dupuit. That lxy must be an odd fonction of d-7_·'" is 
observed by Reiner [1929, 1, p. 17], [19~3, 1, Sect. X, p. 139, 150]. • 

(i!a) [1765,1,§81. • 
( 13 ) [1866, 1], [1872, 1]. Kleitz's equationsnecessarilyreducetothecJassical 

form ( 18. 1); he stated that the coefficients ,vere to be variable, but the manner 
of their variation is not specified in the published abstract of his paper. 

( 14 ) [1868,1,Notell. 
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where Pij=::. tij+ p ô;j• lt was Boussjnesq also who first applied 
Cauchy's method of isotropie tensors to the determination of the 
admis~ible form for a non-linear hypothesis. By developing ( 18. 2) 
he obtained expressions which in the present notation are 

( 18. 3) tir== - p <Vj + À dk k oij + 2 [J- (/ij + 2 ( A - C) ( di k w\ + d/ w/) 
+ B r11.:1.: dij+ iC dl1.: d\+ D(rfk1.:) 2 oii_ 4EIId oij+ ... , 

where A, B, C, D and E are second order coefficients of viscosity, not 
specified in form. 

M. Levy {1 5), reasoning from N avier's molecular notions, proposed 
a theory in which higher derivatives of the velocity occur; while his 
resulting stresses for isotropie fluids, derived by the method of iso-
tropie tensors, consist only of linear combinations of generalized 
Laplacians di/1 ,1

1 
, ••• Jk h' there is no reason for limiting oneself to such 

expressions, and ,ve shal.l prefer to stale Le~y's principle in the form 

(18.4) 

where xi is the velocity vector. 
By an application of the notions of Maxwell's kinetic theory of 

gases ( 1 6
) Butcher ( 1 i) obtained the equations 

(18.5) _i_f [kt-+-(k+ ')) !!_] :i.;i, .. _ v i'--i · ( + o f'.-px· i) l ' 3 dt jl < l ,/ ) 1 ./ 1- l' 

l+-dt 

which for steady motions or for l == oo reduce to the Navier-Stokes 
equations. 

(u;) [1869, 1]. In an earlier paper [1867, 1, p. 240-241] ·he proposed 

F (X, i;) for the shearing stress in a rectilinear shearing tlow, which he 

reduced to F(X) ( !;)-
( u;) ln the succeeding review, reference is made onl y to th ose pa pers ,vhere 

stresses or dynamical equations containing new terms not included in the 
classical theory based upon (13. 1) are proposed. No mention is made of the 
extensive literature concerned with the values of p. and À and various other 
coefficients, either in gases or liquids, as derived from the kinetic theory. 

( 1i) [1876, 1, p. 103-111]. Cf. [1882, 1, p. 79-80]. 
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The experimental discovery of Reynolds ( 18
) that a temperature 

gradient in a fluid at rest is of itself sufficient to produce a non-equili-
brated state of stress and resultant motion shows that the concept of 
fluidity as embodied in Stokes's, Boussinesq's, or even Levy's prin-
ciple is too narrow. Reynolds called this phenomenon thermal 
transpiration, and gave a theoretical explanation ( 19

) of it, founded 
upon kinetic theory considerations of a rather heuristic nature. 

The subject was taken up at once by Maxwell; employing his 
celebrated hypothesis of molecular forces varying inversely as the 
fifth power of the distance, he calculated the following equations for 
the stress in a rarefied gas ( 20

) : 

(18.6) 

The last two terms indicate a stress of the type required for thermal 
transpiration. Equally important is the occurrence of 11.2 in the 
coefficients of these terms, suggesting that in the general case the 
stress may be a power series in 11.. 

At a later time ( 1883) Reynolds ( 21 ) claimed that the ordinary 
Navier-Stokes equations are inconsistent with the condition of adhe-
rence at a solid boundary at the commencement of the motion, and 
by some obscure arguments of mixed molecular and phenomeno-
logical nature proposed equations which (ifl have correctly understood 
his unexplained symbols) con tain the term - l2 :i/,J ,J added to the 
acceleration, l being a constant length. His result cannot be derived 
from any symmetric stress tensor. 

( 18 ) [ 1879, 2, § 2]. Since his similarity laws for this and related phenomena 
involve both the density of the gas and the dimensions of the boundaries, 
Reynolds concluded [ § la,-6] that they cannot result fi:om a continuum theory, 
and thus afford proof of the molecular nature of gases. The conclusiqn is 
incorrect. ln the one dimensional case considered by Reynolds, the boundary 
conditions and the dimensions of the boundaries determine the characteristic 
pressure which accompanies a prescribed thermal gradient and prescribed 
temperature, and which occurs in the similarity parameter ( 28. 1) of the conti-
nuum theory. 

( 1\1) [ 1879, 1, Sects. VI-VII J°_ 
(20) [1879, 1, § 1ft.]. 
( 21 ) [1901, 1]. Cf. [1932, 1, Part II,§ 1.7]. 
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The systematic use of the kinetic theory to· deduce expressions for 
the stresses in rarefied gases by approximate integration of the 
Maxwell-Boltzmann equation is the contribution of M. Brillouin ( 2 '.! ). 
His method, however, is really almost that of a continuum theory. 
He supposed that the ratio of the distribution fonction F to the 
Maxwellian distribution m ay be written as an isotropie linear 
fonction (2 3) of :i/,h xi, p, and é, where the dot notation indicates 
material differentiation. The Maxwell-Boltzmann equation contains 
both derivatives and integrals .of F; the terms in F containing first 
derivatives thus gives rise to certain terms containing second deri-
vatives, so that corresponding second derivative terms must now be 
added to Fin order to yield a solution; these terms in their turn give 
rise to third derivatives, etc. From any approximation for F may be 
determined a corresponding approximation to the stress i1·j and heat 
flux qi. Brillouin wrote clown terms containing first and second 
derivatives, intentionally neglecting all products of the various vectors 
and tensors, which he expected to be of importance only in a higher 
approximation. The formulae he obtained are (2 4) 

• "'. K { 1· ) K > -1·· 1 (18.7) il1==-pmàzj+ 1 li 1if + 2 1 (zj( 

+ K:i { 0-i,j} + K4, j P'i,i} + l(; { ê,ilm(j}[m,j }, 

(18.8) q(==- C1a\+ C20,t+ C3p,t+ Cr,.êtjkwik+ C5fi dit+ Coxi . . . . 
+ cï~+ Cs~+ C'Jfi dik...1,- C10 dkk,i+ C11fixi,t+ C12fiOJ,i 

+ Ci:;Jip,i,t+ Cu/t dkk+ C15/t0'\k+ Cu,/tp·\k . . 
+ C1ïéijkji êklm W/m + C1sêijkfiQ,k+ C19êtjkjip-:I 

+ C20 êtjkJixk + C21 ( Xt ,j,j _ dkk,t) + C22 êtjkwik 

+ C2:3fÎêjklwkl,i+ C2,.fjêiklwkl'i+ C25êtjkji(xk,,,l_ d 1rk). 

( 22 ) [1900, 1]. 
( 23 ) The notion of an isotropie function can be traced back at least to Cauchy 

in examples, and has been much employed in continuum mechanics. A recent 
example is Robertson's analysis of turbulent motions [ 1940, 1 ]. Let me empha-
size the fact that the theory of fluids developed in the present Memoir depends 
in no way upon the notion of isotropy. Cf. § 21, Remark 5. 

( 2') [1900) 1, § 31-32, 36]. ln the interest of brevity I have ·Întroduced 
differen t letters for his coefficients. The term whose coefficient is C2:: is mis-
printed in Brillouin ,s paper. 
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Here Pm is the mean pressure (p,,,=- ; )• bars are used to indicate 

the extent of the dot operation, the notation { ai1} is defined by 

(18. g) . } I • • I k ~-/ az. = - (al·+ a·z) - - a .k ul· 
( / - 2 / / 3 1 ' 

and fi is the extraneous force vector. There are several noteworthy 
features of this remarkable result. Fourier's law of heat conduction 
(2 5) is generalized for the first time, and Brillouin's formula predicts 
( among other interesting new phenomena) a counterpart of thermal 
transpiration, in that deformation of a fluid at uniform temperature 
gives rise to flow of heat. ln fact, the same variables occur both 
in ti1 and in qi. ln the equations as actually written there is a 
certain redundancy, in that both xi and Ji occur, while by the 
momentum equation one or the other may be eliminated. Further-
more, the terms whose coefficients are C4, C18, Cu), C20, C22, C23, 

C24 , C25 , are axia_l vectors, while qi is a polar vector, and thus these 
terms are incorrect; the term whose coefficient is K 5 is an axial 
tensor, and thus is similarly incorrect. Not only are the coefficients 
unspecified in form or value, but also Brillouin's purely formal orde-
ring of the terms by the order of the derivatives occurring is not 
satisfactory, since neither order of magnitude nor analytic character 
can be determined in this way. The generality ofBrillouin's method 
has not been equalled by any subsequently proposed, and his brilliant 
work, though insufficiently appreciated in the current literature, 
remains to this day the greatest single advance in the theory of 
rarefied gases. His ideas are the starting point of the present 
memoir, as shall appear in paragraph 19. 

Claiming that capillary films are but narrow regions where large 
but continuous density gradients occur, Korteweg (2 6) realized that if 
such were indeed the case the Navier-Stokes equations would become 
inadequate in these layers. For anisotropie tluids be proposed 

(18. 10) tij==- poij+ Aï/0,k+ Bi/p,k+ ü/1p,lp,k+ Dz/1p·1,k+ Ei/1,xl,k, 

( 25 ) Cf.§ 13. 
(2 6 ) [1901, 2, § 5-7]. Cf. [1932, 1, Part IV,§ 1.3]. 
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where Aï/, ... , Ei/t are tensorial coefficients, an expression which 
for isotropie fluids he reduced to the form 

where a, ~' y, ô are coefficients of unspecified form. 
Hilbert ( 2') gave a method of fin ding all solutions F of the Maxwell-

Boltzmann equation which are of the form 

( 18. I 2) 

where / 0 , / 1 , ••• , are also solutions, and /1. is an arbitrary parameter, 
to be identified with the mean free path-truly an extraordinary type 
of solution for a non-linear integro-differential equation. Since as 
À o the simplifying assumptions ( 2 8

) upon which the Maxwell-
Boltzmann equation is derived lose their validity, while as) .. oo an_y 
polynomial approximation to ( 18. 12) becomes less and less accurate, 
the results obtained by this method can have at most a narrow range 
of validity, and an asymptotic character. 

Claiming that Hilbert's parmeter ) .. need not be identified with the 
mean free path, but may be given different sjgnificances as the collision 
integral in the Maxwell-Boltzmann equation is modified to describe 
various types of gas· conditions, Bolza, Born, and von Karman (2 8a) 
applied Hilbert's method to the analysis of phenomena at very low 
pressures, when encounters of the molecules with each oter are so 
uncommon as to be negligible. 

Hilbert's method has not been sufficiently appreciated, and among 
physicists a more elaborate and less definite scheme devised by 
Enskog (2°) has found acceptance. Like Hilbert, Enskog too begins 

( 27 ) [1912, 1], [1912, 2, Chap. 21]. . 
(2 8) Only binary encounters are considered and the transfer of energy al 

collisions is neglected. 
( 28a) [1913, 1]. 
(29) [1917, 1], [1939, 1, App. A]. Sorne of Enskofs results were derived also 

by Chapman [ 1916, 11, [ 1917, 2]. who considered the equations of transfer 
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with a " À-series " ( 18. 1·2 ), but while in Hilbert's method the succes-
sive approximations are uniquely determined at each stage, in 
Enskog's a considerable arbitrariness is introduced, to be eliminated 
la ter by a formai procedure whose mathematical and physical meaning 
is obscure. Enskog's second approximation (3°) for the stresses • 

includes terms containing products such as (1~;).i and ·6,;6,j, 

Enskog's results were extended by Leonard-Jones ( 31 
), who disco-

vered new terms in the stress equa tions. 
J affé ( 32 ) proposed to find a series solution of the.Maxwell-Boltzmann 

equation in the form F == / 0 + /t ) ... - 1 + /,1. i-.. - 2 + ... , and hence appro-
priate to very rarefied gases; the first approximation is '' free mole-
cule flow" rather than Eulerian hydrodynamics. 

A theory of viscous· fluids based upon Stokes's principle was 
constructe·d by Girault ( 33), but following a mistaken premise he 
incorrectly annulled all the terms of even degree in the rate of defor-
mation. 

The most general stresses yet derived from the kinetic theory by 
Enskog's method are those of Burnett ( 34 ); they contain those of 
Maxwell, Enskog, and Lennard-Jones as special cases. Burnett's 
equations were derived in a shorter way by Chapman and Cowling( 35

), 

directly. The claim, frequent in the physical literature, that llilberù method 
fails to yield the Navier-Stokes equations is shown to be false by Grad [ 1950, 1, 
Appendix 8 ]. 

C30 ) [1917, 1, Ch. VI; see especially p. 122-127]. 
( 31 ) [ 1923, 1, § 9-12 ]. Jones's results are discussed by Rocard [ 1924, 1 ], 

[1927, 1, § 10-16], [1932, ;l, Chap. VIII] who notices [1927, 1, § 12] thattheyare 
incomplete. Cf. [ 1932, 1, Part Ill, § 1. 1 ]. 

( 32 ) [ 1930, 1, § 4J Cf. the earlier work of Bolza, Born, and von Karman, 
mentioned above. 

e:i) [1931, 1, Chap. III]. Cf. § 12, ( 27 ) of the preceding Memoir. Three 
-applicatiOfl:S of Girault'~ theory are given by Viguier [1947, 1], [1949, 5 ], 
[ 1950, 2]. The terms incorrectly annulled by Girault do not affect the results 

• discussed in the second and third of these papers; in the second is given a 
numerical estimate for one of the third order coefficients of viscosity. 

( 3'~) [ 1936, 1]. 
( 35 ) [1939, 1, § 15.3, 15.41]. Cf. also [1950, 3]. 

Journ de Math., tome XXX. - Fasc. 2, 1951. 
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who present them in the following form : 

(18.12) 

the bracket notation being defined by ( 1.8. g ). 
For Maxwellian molecules the coefficients have the numerical 

values 

(18. 13) 

_ 4 ( 1 dlogp.) 
mi- 3 2 - dloo-0 ' 

b 

fil:.== o, 
_ dlogp. 

m5 -
3 dloo-0' 

b 

fil2 == 2' fil;3 == 3' 

Chapman and CO"\Yling ( 36
) derived also a corresponding expression 

for the heat flux 

( 18. 14) [J-'2 p.?. [ 2 . • • ] qt==-x0,t+ 01 pO dkk0,t+ 02 pO 3 (dkk0),t-+- 2 0,ixJ,i 

p.?. . p. '2 . p.?. . 
+ 03 PPP,i{ dit}+ 0,. p { d\ },k+ 05 pO 0,i { d 1t}, 

where for the Maxwellian molecules the coefficients as corrected by 
Chang and Uhlenbeck ( 3 ï) are 

( 18. I 5) 
' 01== (2 - dlogp.), ) 4 , 2 d1og0 

t Û:,=- 3, 0,= 3, 

It is these last formulae which Tsien ( 38
) recommends as sui table for 

the description of aerodynamic phenomena at altitudes of 3o to I ookm. 

crn ) [ 1939, 1, § 15 . 3-15 . 4 J. Cf. [ 192 7, 1, § 39]. 
( 37 ) [ 1948, 3, § III]. Kohler [ 1950, 4, J ohtains the relation m3 == 0,. for ail 

types of molecules. 
( 38 ) [ 1946, 1, p. 654]. The suhject is considered further by Schamherg 

r 1947, 2J. 
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Several special stress formulae were considered by Sakadi.First ( 38a) 
he proposed an expression equivalent tho the second approxima-
tion ( 7. 7) to Stokes's principle, but, falling back on an argument of 
the type used by Girault, he rejected it in favor of an unexplained 
and very elaborate substitute. N ext ( 3 80

) he employed a formula 
equivalent to the result of adding a term in w 1k wkj to Boussinesq's 
expression ( i8. 3 ), and another equivalent to the second approxima-
tion in Girault's theory. 

Proceeding b y analogy to his approximate theory of large elastic 
deformation, Seth ( 3 se) " for the sake of simplicity " proposed 

( 18. 15 a) 

where s1j i:; a formai analogue of the Eulerain strain tensor of Almansi 
and Hamel: 
(18. 15b) 

Here indeed we see the absurdity which can result from pursuing 
" simplicity " and a false analogy to elasticityin fluid dynamics, for 
in forming his tensor si1 Seth has abused the most élementary physical 
principles by adding together quantities of different physical 
dimensions. 

Reiner ( 39 ) reduced the mathematical expression of Stokes's prin-
ciple to an elegant and perspicuous form in the isotropie case. The 
resulting theory, whose formulation in completeness, simplicity, and 
generality off ers a favorable con trast to the elaborate and yet extre-
mely restricted approximative methods of the kinetic theory, is 
directed rather toward phenomena of non-linear viscosity in liquids 
than toward the effects encountered in rarefied gases. This theory 
has been discussed in paragraph i i of the preceding Memoir. 

Leaf ( 39n) has proposed to treat viscosity in an inert mixture of 

(38a) [1941,1]. 
(38b) [1942, 1]. 
(38C) [1944, 1]. 
( 39 ) [1945, 1]. 
( 39a) [ 1946, 2]. 
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several fluids by assigning to each fluid r. a partial stress tI'ij of the 
type 

( 18. 15 C) 

where pr is the partial pressure 
(18._15d) 2dtiti- .i-tit,i+ .i-tii,i, 
x~i is the velocity of the fluid à, and ).rn, pl~ are coefficients. 

Garcia ( 390
) has committed the same astonishing blunder as Seth : 

his " formula cardinal completa y exacta ... par a deformaciones 
finitas " differs from ( 18. 15 a) but in a change of sign. 

Reiner's theory was developed for the case of an incomp~~essible 
fluid by Rivlin ( 40 

), and applied to several extremely important 
examples. Rivlin's results have. been discussed in paragraphs H-12 
of the preceding Memoir. 

Chang and Uhlenbeck ( H) have consecrated their energies to the 
formidable labor of extracting part of a third approximation by 
Enskog's method, but their results are not yet published. 

ln an attempt to represent thermal phenomena in gases Verschaf-
felt ( 42

) in effect prop•osed 

( 18. 16) 

where a is a coefficient which is a fonction of:- only. 
0 

C3 9b) f1947, 2J, [19/48, 9]. 
( 40 ) [1947, 3], 11948, 7], [1949, 2]; cf. [ 1949, 3]. Rivlin obtained also a 

formula for one of the second order viscosity coefficients in a liquid containing 
long chain molecules in solution [ 1948, 10 ], [ 1949, 4. ]. 

('~1) [ 1948, 3]. 
('~2) Verchaffelt's actual proposai [ 1948, 4, ], f 1948, 5] that extraneous forces 

of the type Jt== be presumed is contradictory to the whole notion of stress 

which <livides all forces acting upon the medium into extraneous forces, which 
are given fonctions of position and velocity, and unknown mutual forces, to whose 
effect it is postulated that the stress forces are equivalent. Thermal forces 
certainly belong to the latter category and hence should be specified only in 
terms of stresses. Formally, of course, since the extraneous forces and the 
stress forces en ter the dynamical equations (A. 51) in precisely the same way, 
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The hydrodynamical equations derived from heuristic arguments 
of mixed molecular and phenomenological nature by Predvoditelev( 4 3

) 

differ from the classical ones in that the ordinary acceleration is 

replaced by ( 1 - ~),Xi+ ( a:i; - :HX",k), where is a coefficient. 

J affé's kinetic theory method for very rarefied gases has been orga-
nized and applied by J. Keller (1' 4 ). 

A new method of integration of the Maxwell-Boltzmann equation 
discovered by ij. Grad ( '• 5) does not really employ the notion of 
stress and heat flux, but instead yields gross equations of motion in 
terms of moments of ~he distribution fonction up to any specified order. 

f 9. HEURISTIC PRELIMINARIES. BRILLOUIN's PRINCIPLE. - Our purpose in 
the present Memoir is to give a rather general definition of a fluid as 
a special type of continuous medium susceptible of the principal phe-
noniena observed in rarefied gases. A first step in this direction was 
taken in.the previous memoir, where the theory of the simple Stoke-
sian fluid was developed as the most general fluid obeying Stokes~s 
principle and possessed of a natural viscosity and a reference tempe-
rature. W,hile this theory reveals dependance of the viscous stresses 
upon the pressure in a fashion characteristic for phenomena at low 
pressures, it does not describe other effects, such as thermal transpi-
ration, which are equally characleristic of rarefied gases. Thus to 
generalize the Stokesian fluid we should expect to propose that the 
stress tij depend not only upon the rate of deformation dij and the 
thermodynamic state, but also upon the thermal gradient 0, 1, and, for 
that matter, upon the gradients of the other variables of state : p,1, 

p, 1, E, 1, Y},i• Now in general, however, it is assumed that even for 
fluids in motion there exist equations of state giving any one of the 

any given term included in the latter alternatively may be forced into the former. 

Since dim == T, Verschaffelt's theory contains a natural time ((f. § 11), and 
[J-

hence is not included in the theory of the present Memoir. 
(,.3) [1948, 6, equat. (26 a)]. 
(H) [1948, 7]. Sorne special situations are considered in [1949, 6]. 
( 45 ) [1949, 1, § lt.-5], [1950, 1, § 31-32]. 
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state variables in terms of any other two ( 46 ); thus we shall confine 
ourselves to the two gradients 0,i and p,;, though taking care to note 
that in more general situations where no equations of state exist our 
theory will require generalization. , 

Once having gone so far, however, we may equally expect that if 
gradients of 0 and p can give rise to stresses, in a still higher appro-
ximation gradients of these gradients can similarly engender stresses 
of their own. At the same time, as suggested by Levy's principle 
( 1.8. 4), since the first approximation to the viscous stress reflects the 
presence of velocity gradients, the gradients of these gradients may 
well affect the higher approximations. Thus we may propose that 
the stress t;j be a fonction of these gradients up to any specified 
order k. 

Suppose now we embody these remarks in a formai définition of a 
fluid generalizing that of paragraph 5, and proceed with an analysis 
of the resulting terms in the stress analogous to that of paragraphs 6-7. 
After some labor, we reach the at first surprising conclusion that all 
the coefficients of the new terms are zero, and that thus our intended 
generalization simply reduces to the Stokesian fluid ! 

What, then, have we neglected ? An answer is suggested by our 
casual remark above that in general the existence of equations of 
state enabling us to give a complete description of the_thermodynamic 
state in terms of two variables, such as p and 0, is assumed. Suppose 
we do not make such an ~ssumplion. Then we shall need to propose 
that the stress depends at least upon p, p,;, ... , in addition to the 
other variables mentioned above. When applied to this rather ela-
borate structure, our methods will now yield a positive response, and 
enforce certain groupings of the terms. Consider, however, the 
second alternative : assuming that we do have an equation of state 
such as/ (p, p, 0) == o so that two state variables furnish a sufficient 
description, let us inquire what added information about the 
fluid this equation supplies. Now the simplest case is that of an 
ide al gas : p == R p0, where the constant R varies from one gas to another 

C,6) And, for heterogeneous fluids, the instantaneous concentrations of the 
components of the mixture. 
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and thus is a material constant, whose dimensions are those of specific 
en trop y : dim R = L 2 T-2 9-1 • 0 f course we do not wish our theory 
to be limited to any special type of gas or liquid. The case ofthe 
ideal gas simply suggests the missing element in our summary of the 
phenomenological properties of fluids, namely, the exjstence of a 
material constant R,0 which might well be called the jluid constant or 
natural entropy, whose dimensions are 

(19. 1) 

Indeed,. once we have ( 19. 1 ), we shall not need to suppose our fluid 
to have an equation of state. 

It will not be necessary to postulate the existence of the fluid cons-
tant Rn. Notice that if Xn be the natural conductiçity (§ rn) and fLn 

the natural viscosity (§ 4-5) of the fluid, we have 

ML 
(19. 2) 

Thus 
(19.3) 

where c is a dimensionless material constant. lntroducing the fluid 
constant Rn into the list of variables upon which the stress may depend 
is then equivalent to introducing similarly the ordinary thermal 
conductivity. 

We have seen, then, that in general the stress may be expected to 
depend not only upon the quantities fLn and dij which gi ve rise to the 
classical first approximation, but also upon the variables wich appear 
in the classical first apprqximation for the heat flux, viz., Xn and 0,i· 

Conversely, we should expect that the heat fJ_ux in the general case 
should de pend not only upon Xn and 0 ,i but also upon P.n and dij• 

lndeed, from the phenomenological point of view the stress and the 
heat. flux represent but different aspects of the same principle. The 
stress tensor is a tensor whose divergence is addcd to the extraneous 
force in order to represent a resultant force equivalent to the 
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unspecified mutual forces and so to balance the momentum 
equation ( 47 

). The heat flux is a vector whose divergence is 
added to the stress power in order to represent a resultant power 
equivalent to that supplied by unspecified exchanges o( mutual 
energies without performance of mechanical work and so to balance 
the energy equation ( 48 

). For those who prefer a molecular point of 
view, both stress and heat flux are but the averages of pu rel y mecha-
nical actions, the former representing the average momentum transfer 
across an imaginary surface, the latter the average energy transfer. 
vVe owe this observation to M. Brillouin C9) : " ••• pour un corps 
formé de molécules animées de mouvements individuels, dont aucun 
élément de volume ne conserve une composition moléculaire invariable, 
cette séparation des phénomènes en mécanique et therµiique est 
tout à fait insuffisante pour fournir le phénomène complet". A gross 
model of a continuous medium is defined by specification of these 
gross equivalents in term of other gross variables. The conceptual 
analogy between stress and heat flux suggests that for any general 
model the gross variables selected for this purpose might well be 
expected to be the same for each. Among these variables there will 
be some representing the thermodynamic state, some specifying the 
type of kinematical condition to which the medium responds, and some 

, supplying units of the dimensz·ons necessary for consistency. For a 
jluid, tl{e kinem a tic al variables are velocity gradients only, and the 
principal dimension al constant is the natural viscosity. A general 
model of a solid would employ instead displacement gradients and a 
natural elasticity. 

Thus, steadily clarifying the classical phenomenological point of 
view by stripping it of superfluous subsidiary assumptions, we have 
finally attained a very general and very simple concept of fluidity, 
which we may call Brillouin's principle: the heat flux qi and the stress 
tii are functions of the same list of variables, viz. the velocity gradients 

( 47 ) Cf. (A.5). 
('~s) Cf. (A.7). 
( 49 ) [1900, 1, § 37]. 

... , 
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and the thermodynamical gradients 
P,t, P,ti, ... , 0,t, 0,th ... ' 

to which we may add also the gradients of the extraneous force field 
( 5 0) : 

But the example of the Stokesian fluid shows that no less important is 
the specification of the dimensional scalars, for which we shall select 

that is, the list of scalars _is the same_ as that for the Stokesian fluid, 
• with the important ( and indeed essential) addition of Xn for the ·stress 
and ~n for the heat flux. Any further quantities entering the stress 
and heat flux equations beyond those given in the four lists above are 
perforce dimensionless. 

It might be expected that so general a concept of fluidity as that we 
have now attained might be too vague to yield definite results, but 
on the contrary we shall shortly demonstrate that th.e principles of 
invariance quickly and easily lead to perfectly specific expressi_ons for 
both the stress and the heat flux. 

Our list of scalars 
{J-n, Xn, p, Pm, 0, • ~o, 

or, alternatively, 
{J-n, Rn, p, Pm, 0, 0o, 

is now sufficient to enable the construction of scalar quantities of all 
four fondamental dimensions : -

(19. 4) 1

/ dim == T, p • 

d . fl-~(Rn0/ -M lffi---- , 
. p2 

1 

1 
d. fl-n(Rn0} -L lffi---- , p 
dim00 == 8-

(1> 0 ) Since pf;.== p Xt- t/J, the addition of ./tJ, etc., to the list of variables 
upon which tk, may depend is equivalent toadding the acceleration gradients Xt,;, 
etc. Cf. the remarks on Brillouin ,s theory in paragraph 18. 

Journ. de Math., tome XXX. - Fasc. 2, 1951. I / . 
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20. THE METHOD OF THIS MEl\lom. - Our method consists now in 
embodying the foregoing heuristic remarks in a formal definition of 
a fluid, from which we shall deduce formulae for the stress and the 
heat flux, just as in the theory of the Stokesian fluid, by applying the 
principles of tensorial and dimensz"onal invariance. 

Since the stresses so calculated turn out to con tain the terms (!8.6) 
first derived by Maxwell, we shall call this fluid the Max~"'·ellian fluid, 
although our approach to the subject is closer akin to Duhem's 
than to Maxwell's. The concept of fluidity embodied in the 
Maxwellian fluid consists partly in Brillouin's principle, which is a 
broad generalization of Stokes 's principle (§ 3 ), Boussinesq's 
principle (18. 2), and Levy's principle (18. 4); but, equally important, 
our concept also specifies and restricts the number of dimensional 
material constants which a fluid may possess. 

To Brillouin we owe the notion of defining a fluid in terms of an 
infinite list of tensors, but in this Memoir we direct his method to the 
continuum itself, dispensing with the kinetic theory as intermediary. 
U nlike Boussinesq, Levy and Brillouin, we do" not restrict our atten-
tion· to the isotropie case, and our theory yields perfectly definite 
formulae for anisotropie fluids. Moreover, our application of the 
principles of dimensional invariance determines the specific form of 
each coefficient up to a dimensionless constant; in particular, from 
the assumption that the stress and heat flux are, power series in the 
various vectors and tensors upon which they depend we shall prove 
that they are necessarily also power series in the viscosity [-L,0 as was 
suggested by the result of Maxwell ( i8. 6). We shall easily demons-
trate that our method yields all the terms of a given degree in [-Ln, and 
our resulting formulae include those of Maxwell, Enskog, Lennard-
Jon·es, Burnett and Chapman-Cowling as special cases. Thus our 
method is in one sense more general and more exhaustive, yet in 
another sense more definite, than those used previously. 

21. • DEFINITION OF THE MAXWELLlAN FLUID. - A Maxwellian fluid is a 
continuous medium such that : 

1. There exist material constants fl·n, Zn and 00 , called respectÙJely the 
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natural viscosity, the natural thermal conductivity, and the reference 
telilperature, whose dimensions .~re 

(21. 1) 

d. M 
IffifJ-n== L T' 
. -ML d1mxn==-

8
, 

T:1 

dim00 == 8; 

Il. The stress tii and the heat flux qi may-be considered functions of 
the following variables only 

(21. 2) 

fl-n, xn, p, Pm, 0, 00 , and dimensionless material constants; 
dii, uii, p ,t, 0 ,t, Ji.J; 

...................... ' 

................................ , 

and a,·e analytic functions of all the vectors and tensors listed. 

III. If all the vectors and tensors listed vanish, then tii reduces to-p ôih 
and qi reduces. to zero. (ln paragraph 30 we shall find ca!]se to narrow 
our definition slightly by strengthening this restriction). 

Remark 1.. - The Maxwellian fluid has no natural time. Thus it 
is a generalization of the Stokesian fluid, rather than of the Reiner-
Rivlin fluid (§ 11 ). 

Remark 2. - ln the list (21. 2 ), the first velocity gradient :iJi,i bas 
been decomposed into the rate of deformation dii and the vorticily wii 
so that later (§ 30) the eff.ect of rotation may easily be se_parated. 

Remark 3. - Our notations, and the definitions and distinc.tions 
sketched in the appendix to the first paper, render our definition 
valid and meaningful for compressible and incompressible fluids ali\.e. 

Remark 4. - For the, subsequent analysis we shall prefer to intro-
d uce a fluid constant Rn, dëfined by ( 19. 3 ), where c is an y convenient 
number. • 
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Remark~5. - Note that no mention is made of isotropy at this point. 
A theory of mathematical physics must be founded upon some 
mechanical or physical concept, sufficiently specific to lead to defi~ite 
equations without further geometrical or kinematical assumptions. 
Isotropy is an idealization ·whose only value lies in the purely rriathe-
matical simplifications it effects. ln paragraphs 22-25 we shall show 

. that the present theory yields definite expressions for the stress and 
the heat flux in anisotropie fluids, reserving the reductions valid in 
the isotropie case for paragraphs 26-27, where it will appear that the 
necessity for abandoning the compact tensorial notation for the 
coefficients and instead writing clown every one explicitly will render 
the formulae actually more lengthy. 

22. ANISOTROPIC FLUIDS. - 1. Power series for the stress. - Our 
method is to develop the stress tii in a power series in the vector and 
scalar variables in the list ( 2i. 2 ). lt is convenient to di vide the 
procedure into two steps, beginning first with the velocity gradients: 

(22.1) tïi== (~) Aij+ (!) Ai/z d 1k+ (il Ai/,&ik+ (î) Ai//llndnmd1k+ (il Ai/rndnmc,:/k 

+ (~) Ai//llnWnmW1k+ (!) Ai/d,,J,em,zk--1--(~) Ai/rnpq dqp dnm d'k • 

+ (~) Ai//llnPqdqp dnmw1k+ (~) Ai/rnpq dl/pwnmW 1k 

+ (1) Ai/ln,l qWqpWnmwlk+ (~) Ai/lmnp dPnxnz,,k + (~) Ai/·lmnpwP/l:i:"\zk 

+ (~) Ai/bnnxn,mlk+ .... 

The ordering of the terms and the notation are de~ermined by the· 
following scheme. Let the dimensions of the term whose coefficient 
is A"::. be L -L"T-t", then the number l" + t" = b is written in paren-
theses at the upper left of the coefficient, (bJA·::., and (bJA_·::. is written 
clown before (cl A"::. if b < c. The lower left index is simply enume-
r~tive. • [It will be proved la ter(§ 23) that this method results in the 
ordering of the terms according to powers of the natural viscosity ~n-] 
In.the expansion (22. 1 ), all terms for which h == o, 1, 2, 3 are actually 
written down. 

The coefficients ~) A"::. are functious of the variables which remain 
in the list (21.. 2) after dih c,ih :i:i,ik, ... , x\i2 ••• Îk+1, ••• , have been 
struck off. 
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We now expand each of these coefficients in a series_ in the remai-
ning vectors and tensors 

(22.2) _ (O)Ai,- (O)(O)At,+(0)(1)Ai,kp k+(0)(1)Ai,k(} k+(0)(2)Ai,k'lp kP l 
1 ,- 111 ]. 111 J , 112 / , 111 / , , 

+ (O)(2)Ai.klp ka z+<0)(2)Ai,k/(} ka 1+<0)(2)Ai.klp k/ 
1 1,2 / , , 1 1 3 / , , 1 1 4 / , 

+ (~\';) Ai/16,kt+ <1>,<;> Ai/1/k,t+ <~\<;> Ai/lmP,kP,tP,m 

-+. cw:> Ai/lm P,kp,18,m + <1>,(;> Ai/lm P,ka,,a,m 
+ cw:> Ai/lm6,k0,,0,m + '~\(;> Ai/lmp,k/t,m 
+ cw~) Ai/Lm6,k/t,m + <1\<;> Ai/lmP,kP,tm 
+ cw:> Ai/lmO;kP,lm + (~\<;> Ai/lmp,k6,tm 
+ io/ i~> Aijklm0,k0,zm + <ti ~3i Aijklm P,klm 
+ ~o{g> Ai/lm0,ktm+ ~o,>g> Aï/lm /k,lm+ .. •, 

+<WJ>Ai/rnp,mp,n+'Wi'Ai/rnp,m0,n 
+ ci>,(;> At/zmnO,m6,n+ '}/,<f> At/rnp,mn 
+ <W!' At/rnO,mn + <W;> A'/tin /m,n + ... , 

CJi> Ai/rn-::::::::..- ci>{f> Ai/rn+<W;>Ai/rnqp,q+ <x\<~JAi/rnq0,q+ ... , 
(!) Ai/lm -::::::::. C!\<f> Aï/lm+ (!)1(il Ai/lmnP,n + <!>,<t Ai/lmn6,n+ ... , 

cil At/rnPq=:. <x>,<J> Ai/zmnpq+ ... ' <x> Ai/lmnp=:_<i>/f> Ai/lmnp+ ... ' 
(~) Ai/lmn. == (~\<f> Ai_/lmn + ... ' 

ln these series the coefficients <!\<;> A·:.:. are fonctions only of the 
scalars ~n, Rn, p, Pm, 0, 60 , and dimensionless constants. The first 
·upper index ( b) in parentheses is the same as that of the quantity 
being expanded. The second,· (a), is determined by the following 
sch·eme. Let the dimensions of the term in the new series whose 
coefficiént is t<;>A·::. be L-''T-t'M-m8q; then put a=l'+t'+3m, 
and order according to inéreasing a. The second lower index, sepa-
rated from the first by a vertical bar, is merely enumerative. We 
~ave actually written out in the expansions (22. 1) and (22. 2) 

-c"ombined all the terms for which a+bL..3. [It will be proved 
later (§ 23) that consequently we have written out ail terms of order 3 
or less in a power series expansion in the viscosity coefficient ~n]• 

The symmetry of t4e stress tensor tii imposes the general require-
ment 
(22.3) (b)(a) Al: .. _ (b) (a) A _i .. . 

hld J ... - hld J ... , 
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upon all the coefficients. • Other simplifications result from such 
symmetries ~s dij= d1i, p,u= P,Ji, wij= __:_ (ùJi, but we shall not work 
them out. 

2a. ANISOTROPIC FLums. - IL The form of the stress coefficients. -
Now as we have said, all the coefficients (~ml A·::. are of the functional 
form 

(23.1) 

For the following dimensional argument, let the space co-ordinates 
be rect~ngular Cartesian, so that all tensorial components assume 
their natural physical dimensio_ns. Our resulting co_nclusions will be 
expressed in invariant form, and hence valid in any co-ordinate 
system. From (22. 1) and (22. 2) the dimensions of each of 
the (tl1~

1 A"::. may be determined easily. For example 

(23.2) 

ln general, 

(23.3) 

dim coi coi Ai·=::. dim coi AL=::. dim ti·-== ~, 
1 11 / 1 / f L T2 

dim tii 
dim ciJAt.k dim di. 

d • ( 1 )( 2) - Ai .k lllll - h f f _ / 
•m !t'" - 1 1 - a· a· 0 - d • d. 0 - lffi P,m lffi - ,m lffi P,m lffi ,m 

M 
L T 2 

T 
M 8 

L 2 T 2 L 

where m, l, t, q are known. By ( 19. 4) itfollows then that the ratio 



A NEW DEFINITION OF A FLUID. - THE MAXWELLIAN FLUID. 133 
is dimensionless. If then we di vide (23. 1) by the denominator in 
the above expression, the resulting relation 

(23.4) '~n<;} A . .'.'.'. 
l+m l+m == g( f-l-n, Rn, P, Pm, 0, Oo ), 

l - -+q 
lLl + + :J Ill R 2 0 2 p- l.-- l- 2 Ill . 
1-·n Il 

connects six dimensional quantities composed of four fondamental 
dimensions, and hence must reduce to a relation connecting 6 - 4 = 2 

dimensionless ratios of these quantities. For the desired dimen-

sionless ratios may be selected simply L and -0
8

; that is, g( [J·n, Rn, p, Pm o 

p;n, 0, 0o)=g(L, 0!). Pm o 
We have demonstrated then that 

(23.5) 

L+m. l+m --+q !Ll+l+:JmR 2 0 2 
(b) (a) • · · _ i--n n 
hldA ••• - pl+l+2m 

where th~ tensor (W~i K::: is one having the same tensorial variance as the 
original coefficient (7t\(!l A·::., but whose physical components are dimen-
sionless .f unctions only of dimensionless constants and of the dimen-

sionless ratios Land -0
6 • Thus we have reduced the stresses in a 

Pm o 
Maxwellian fluid· to a perfectly definite form. Furthermore, the 
formula (23. 5) de~onstrates that the stress fensor is. a power series in 
the viscosity coefficient, since t + 2 + 3m is always a non-negative 
integer. _ 

Applying our general _formula ( 23: 5) to the examples (23. 2) we 
immediately obtain 

(23.6) 
/ (0)(0) Ai.-p(0)(0) i(i. 
\ 111 1- 111 j) 

"R -

l 

( l l ( 2) Ai .k mn - P.~ n ( t l ( 2) Ki .k mn 
h 1 2 • / c - p:~ lt 1 2 / l • 

The first of these formulae can be still further simplified, for by III of· 
paragraph 21. we have Kii= - ôih so that (~l 1(~l Ni= - p ô;i· Our 
notation is such that no confusion can arise if we abbreviate the second 
of (23. 6) by the symbolic formula 
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Similar application of (23. 5) to the remaining coefficients actually 
written down m (22. 2) yields the following similarly abbreviated 
table of forms 

(23.8) 
1 

( 0 ) ( 1 l _ fJ-n ( Rn 6 )2 
111 - p ' 

:o)(2) _ p.!Rn 
112 - p2 -, 

coic2i _ fJ-izR11 
1 I 5 - p ' 

:: 1 

< o H 3) - p.~ R! 0 :r 
112 - p"- ' 

1 

c o )( 3 > - p.~ ( Rn 6) :r 
115 - p:1 ' 

:1 1 

c o > c 3) - p.~ R! 0 :T 
118 - p:J ' 

, 1 > , 2 ) _ p.~ Rn 6 
hl1 -~? 

, 1 >, 2 > _ p.~Rn0 
hl4- --y-, 

(2)(0} _ fJ-iz 
'fi11_-p' 

1 

coi c1) _ fJ-,~R! 
112 - --1-, 

o:r 
c0Jc2i _ fJ-izRn 

113 --,;-o-' 

(0)(2)_ p.;; 
116 --;;, 

(0)(:l) - jJ.~R! 
11:i---1, 

p3(,j:F 
1 

coi (3> _ P.:Z R! 
116--y, 

:: 1 

(0) (3) - p.~ R! 0:! 
119 - p:l ' 

:: 1 

< 0 > < :i i _ fJ.~ R! 6 2 

1 l 12 - p2 

1 

c1ic1i_ fJ-iz(Rn0f 
hll - p"l. ' 

c::ico> - P.~ f'or h - 1 2 3 4 h - - ' ' ' ' 11 - p2 

(:l)(0) _ p.!Rn0 
711 - ~-

• < 0 > < 2 > _ p.! Rn 0 
11,-~, 

, 0 ,, 2 > _ p.~Rn0 
1 1 fi. - ' 

coic 3 i _ p.~(Rn0)2 

111 - p'J ' 

c2ic1i - p.~Rn 
,~12-7' 

for h == 5, 6, 

The r~ader may easily verify that our method of ordering m 
paragraph-22 is such that 
( 23. 9) b + a == t + l + 3 m. 
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Thus by ( 23. 5) the sum of the indices (a) and ( b) in parentheses at the 
upper left of the coefficient {t\{;J A'::. is the power of the viscosity coeffi-
cient P.n appearing in its final f orm. Therefore the expansions (22. 2), 
and consequently also the table of coefficients (23. 8), con tain all terms 

• in p.!, 11-:, p.!, and p.! in the general expression for the stresses in 
a Maxwellian fluid. The same method easily and quickly yields all 
the terms of any desired order ( u ). 

24. ANISOTROPIC FLUIDS. - III. Powerseriesfortheheatjlux. - Now 
let us write 

where the expansion is the direct analogue of (22. 1 ), except that the 
heat flux coefficient (1J BJ:.-. is a tensor of order one less than ils stress 
counterpart (fil Aïj·::.. Then each of- the coefficient (tJ BJ::. is to be 
expanded according to its analogue in (22. 2) : 

(2!,.. 2) 

The ordering of the terms is according· to precisel y the same scheme 
as for the stress expansion, so we need not write out the result. 

2a. ANISOTROPIC FLums. - IV. The form of the heatjlux coefficients. 
- The reasoning of paragraph 23 may be applied to the heat flux 
coefficients_ (~\{Jl R::., which thus may be expressed in terms of dimen-
sionless cofficients (tl1(;l L·::. by the same formula (23. 5 ). Since our 
expansions of paragraph 24 are of precisely the same form as those of 
paragraph 22, and since dim tii= ML-1 T-2

, while dim qi = MT-3, 
we have always 
(25. 1) d • [(b)(a) B···] - L d' [(b)(a) A'"'] lffi h I d • • • - T lffi ·1t I d . . . • 

lnstead of applying (23. 5) to each of the heat flux coefficients {tN1 R::. 

( 51 ) ln [ 1948, 1 ], which is a preliminary version of the present paper, ail terras 
in p.~ resulting from a somewhat Iess general definition are ex.plicitly written 
down. 

Journ. de Math., tome XXX. - Fasc. 2, 1951_. 
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• s,eparately we may notice simply that (25. 1) has the effect of increa-
sing l by one and decreasing t by one. Ilence by (23. 5) we have 

·1 

(25.2) < b) ( a) B' • • _ ( R 0 ):I [ ( b ) ( a) ] ( b) ( a) L· · · 
ILI d • • • - n h I d If I d • • . , 

where the quantity in square brackets may be read off from the -
table (23. 8), and t4_e tensor (t l1(:J -L'::. is a fonction only of dimensionless 

constants and of the dimensionless ratios .f!._ and -0
6 , and in a rectan-

Pm o 
gular Cartesian system js· itself dimensionle.ss. ·Thus all the heat 
flux coefficients are deterrilined at one blow. • 

In the general case, _ the forms of the heat flux and the stress expan-
1 

sions dijfer· but ~y the one tensorial index i and the factor ( Rn 0) :i". The 
former distinction is a very important one, however, as shall be 
illustrated presently in the isotropie case. 

26. IsoTROPIC FLUIDS. - 1. The ·stress. - A fluid is isotropie if the 
coefficients . <~Li/;) A·::. and <_t \<; 1:B ·::. in the expansions (22. 2) and 
(24. 2) reduce to numerical tensors. W e cannot now use the simple • 
and elegant formufa ( 6. 5) which Reiner derived as an expression for 
Stokes's principle in the isotropie case; an analogous but more 
elaborate treatment is required. 

·w e shall not give this analysis in detail, but shall be content' to 
indicate an example. • Suppose that -the symmetric tensor a ii is -to be 
an isotropie fonction of the two symmetric tensors b ii _and cij• That 
is, there is a matrix relation of the form 
(26. I) 

where the A():~ are fonctions of those scalars which can be formed 
from the powers bac~. Among these scalars are the principal inva-
riants lb, Ilh, Illh, le, II~; Ille of the two tensors, as well as liigh~r 
invariants such as bijbikb\lim, and joint invariants·<l>he, ... , defined by 
(26.2) 

Each of the matrices band c satisfies the Cayley-Hamilton equation, 
which in the three dim-ensional case assumes the forms 

(26.3) f b 3 == ~h b2 
- Ilb b + Illbl, 

l c 3 == le C2 - lie C + IllcI, 
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Thus all third and higher powers of b and c may be eliminated 
from (26. 1 ), as well as from the various invariants, and we obtain 

(26.4) a== 5"ool + 5"1ob + 5"01C + 5"2ob2+ 5"11(bc + cb) + 5"02C2 

+ 5"21(b2c + cb 2

) + 5"12(bc2+ c 2 b) + 5":db2c 2+ c 2 b 2

), 

where the 5'r<I> are scalar fonctions of the nine invariants lb, Ilh, Illb, 
le,, Ile, IIIe, <I>be, <Pb2 0, <l>hc,2. The component form of (26. 4) is 

(26.5) aij== 5"oo0tj+ 5"1obtj+ 5"01l'tj+ 5"2obikb\ 

+ 5"11(bikc\+ cikb"j) + 5'02CtkrJ··i+ 5"21(bikbk1c1j+ cikbk1b 1j) 

+ 5"12(cikck,br1+ bikck,cli) + 5"22(bikbk1clmcm1+ cikck1b'mbmj)• 

When b and c are not symmetric, or when a depends upon tensors 
of order higher than two, the analysis becomes more elaborate. 
ln the case of the Maxwellian fluid, not only must such complications 
be considered, but also the stress tij depends upon an infinite list of 
vectors and tensors. It is thus not feasible to write out a complete 
formula for the stress generalizing Reiner's formula ( 6. 5) employed 
in the theory of the Stokesian fluid. lnstead, ,ve shall simply 
content ourselves with writing out all terms of order o, 1, 2 and 3 
in the viscosity coefficient P.n- • Using (23. 8) and the methods 
sketched above, for the coefficients (sltij in the power series 

(26.6) 

we thus obtain 

(26. 7) (O)tij-==-poij, (l)tii:.__ Adkkat1+ 2Bdij, 

('>)" RnO[D k ~- C ·] RnlD k0 ,,. C ·0 0· - V1-== p:1 1P' P,kUlj+ 2 1/J'l/J,j + p2 '!.P'. ,kOlj+ 2(p-l ,J+ ·p,1)] 

+ Ron [D:,0,kQ koi1.-+- 2C..Q,iQ 1·] + RnO [D,.p·k kOij. + 2C,p-i ;·] p ' ., ' p-J. . ' ·• ' 

+ fo [D,p,k,Vj+ C,(P,i+-f/)l + i;;· [D,O·\kO;i+ 2C,6,;,i] 

+ _!_ [F1 ( dkk r oij+ F" d 1kdk,oij p -
+ F:;u/kwk1oij-l- 2E1dkkdij 

+ 2E2dikd\+ 2E;;&/kw\+ E,.(dikw'\+ wktd·\)], 
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"'t'j= ~,
6 

[ G, dkkp.lp,1 à'j+ G,dk,pJp,kà'; 
+ G3(dikp,kp,j+ d/p,kp,i) 
+ G.,.d/p,kp,k+ G 5(c,hp·kp,i+ w/p,kp,i)] 

+ R~ [G.dkkp.l01oi·+G dk1p,1pkoi. p·· ti , / 7 , / 

+ Gs(dikp,k0,i+ d/p,k0,i) + G 9 (dik0,kp,j+ d/0,kpJ) 
+ G1odijp·k0,k + Gu wk1p,k0,1o'i 
+ G12(wikP"{·o.j+ w/p,éJ,i) + G1::(w'k6,kp,j+ w/0,kp·1)] 

+ [G dkk0,k0 ko'·+ G sdk10JO kO'· p20 14- , J L, , J 

+ G16( dik0,k6,i+ d/0,kOJ) 
+ G1-;-d'i0,k0,k+ Gis( wik(j.k0,; + w/0,éi·')] 

+ ~,.
0 

[G,,dkkP'',,à'j+ G,.dk,p,1,ka1j+ G,,(d'kP'\i+ d/p,k,,) 

+ G22dkkP't,;+ G2:-.diiP'\k+ G2~(wikP'\i+ w/p,k.i)] 

+ p2 [ G25 dkkf 1,l oij + G2r, dk1J',k o'i 

+ G21(dikjk,i+ d//7,·') + G2s(dikfj'k+ d/f,k) 
+ G29 dkk (f ,i + f/) + G3o diiJ\k + G::1 wifi,k oij 
+ G::i2(wi1.-fk.j+ w/fk.i) + G:i::(rJikf/'+ w/f,k)] 

+ Rn [G:,,, dkk0J /0"+ G:i dk10J koi.+ G3 (dik0,k ·+ d-lr.6 k'i) p?. :; , lj , 5 , ] 6 ,J j , 

+ G 31d::k0,t,i+ G3sdii6·\k+ G:: 9 (wik0,k,;+ u)/0,k·i)] 

+ [G,.o(dk,;yotj+ G41dk1d1kdmmoij p2 
+ G42dk1d1mdmko'i+ G43dkkdi1d1j + G,.,.(dkk)2dij 
+ G45 dkzd1kdij + G46 wk1d1mdmko'i 
+ G41(wikdk1d1j+ w/d;/d/)+ G,.swk1ui1.:dmmo'i 
+ G49Wk1w 1mdmkotj+ G50Wi1w 1jdkk 
+ Gs1(wikc,.)k1d1J+ w/wid/) + G52u)k1w 1mwmko'J] 

+ Rn0 [G;;:i(.ii,jkp,k+ Xj'ikp,k) + Gs, . .il,lkP'koij 
p3 

+ G5,;,,il,iJP,z+ G,;,6 (.i1JiP't + .itliP,i) 
+ Gs 7 (.ii,k,kP,i+ Xj'k,kp·i) + Gss.i1,k'~p,1oii] 

+ Rn [G- (.ii ·k0,k+ ,i.,ik0 k) + G ,il lk0,krJi. p
2 

.,9 ,1 1 , Go , , 

+ G,a.il,i,J0,1+ G62(.il,lj0.t+ x,Jt0,j) 
+ GG3(xi,k,k0,j+ i:/,k0,i) + G6,.x1,k·k0,1oij] 

+ Rn0 [G c.ik k,l zot.+ G ,ik é ·+ G. (.ii l!'k ·+ ,i.-k k'i)]. p2 6,, , , J 66 , ,/ 67 , ,] / , 

Ail the coefficients A, B, C 1 , ••• are dimensionless fonctions of 

L, -
0
6 and dimensionless material constants only. 

Pm o 
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\ 

To conform with classical notations let us write À== A (-Ln, 
p.== B P.n• Then the terms (0 ltij and (1 )tij yield the classical Newton-
Cauchy-Poisson law ( 18. 1 )~ Thus for the Maxwellian fluid as for 
the Stokesian fluid, in the case of isotropy the classical theory of 
viscous compressible fluids is the first approximation. 

Notice that not only is the number of terms greatly reduced in the 
isotropie case, but also whole classes of terms, and consequently 
certain types of phenomena, which appear for anisotropie fluids, 
disappear altogether ( 02 ). For example, for an anisotropie 
Maxwellian fluid, by.(22.2) and (23.8) the terms of zero and first 
order in the viscosity (-Ln are 

[ 

1 1 

(26 8) [Ï·--poi·+ u (Rn0)2 (O)(lll(i-.kp ,.+ (Rn)-=F(O)(IJKd-0 ,. 
• J - I ,-·Il p 1 1 1 / ,"- 0 J 1 2 / ,"-

+ , 1 , ( o J Kt .k1 dit. + ( , Ho J K t.k1 w'k] 
1 1 1 / • 2 1 1 / • ' 

while in the isotropie case the three tensors (O><n (ù)(l) and <l)(O) neces-
1 i 1, 112 211 

sarily reduce to zero. Thus thermal transpiration, for example, is 
an effect of first order in the viscosity for anisotropie Huids, but only 
of second order for isotropie fluids. 

Notice also that in (2 ltij only second order velocity gradients occur, 
but in (3 ltij not only second but also both third and fourth order 
velocity gradients enter ( 53 

). 

27. IsoTROPIC FLums. - Il. The heat .fiux. - In the isotropie case 
t.he fact that the heat flux q; is a vector while the stress éj is a tensor 
of second order induces a striking difference betwèen these two 
quantities, for it is precisely those terms in (22. 2) which disappear 

( 52 ) This observation is illustrated by Korteweg's equations ( 18. 10) and 
(18.11). 

( 5:1) My earlier results [ 1948, 1 ], [ 1948, 2 J concern a theory less general in 
that on ly second order velocity gradients are considered. Thus my present and 
former expressions for ' 2 ltti are the same, but my present <3 ltii is more general 
than the former one. " 
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in the isotropie case whose counterparts for the heat flux survive, 
and conversely. W e obtain an expression of the form 

( 27. I) 

where 

(27.2) (11 -R p 0 Rn0p qi- Il 1 t+-- '!.Pi, ) p ) 

,-~) Rll O [ S d. S • S d 1• ] 
- q(:::=::. p'!. 1P,i 1t+ 2P,;W1t+ :-.P,i "k 

+ ~· [ s, o,j dl;+ s, O,ju/, + s, ?,, dk.] 

+ Rllo [U1.i{i ,·+ u~ dk1r i11· p , ' 

The expression for (3 lql is long, so we shall not write it clown, 
leaving its construction as an exercise for any reader who may wish 
to learn by experience the simplicity of our method. For conformity 
with classical notations, let us write - x == P·nRn P 1 • 

Sorne of the interesting new phenomena predicted by this expres-
sion will be discussed in paragraph 3i. 

28. ÛRDER OF l\lAGNITUDE CONSIDERATIONS. - ln the foregoing analysis 
we have ordered the terms according to the power of the viscosity 
coefficient they contain. Since that èoefficient is not dimensionless, 
no order of magnitude consideration in general can be founded upon 
such an expansion, although it .serves to specify the asymptotic 
properties of tij as o. \Ve have been guided rather by a formai 
extension of our results for the Stokesian fluid (§ 8 ), where in reality 
the terms are ordered in powers of the dimensionless number 

j) _ fJ-nd, 
p (28. I) 

where dis a typical rate of deformation. For the Maxwellian fluid 
the analogous ordering is necessarily more complicated, being in fact 
a power series in man y dimensionless variables, one of which is ,J, 
another of which is 

(28. 1) 
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where now O,J,i is t.he squared magnitude of a typical thermal 
gradient, etc. The number ,3;) is one of the two numbers whose 
magnitude indicates the importance of thermal transpiration in 
isotropie fluids. 

A full analysis of the order of magnitude of terms, and hence of 
the effects they represent, requires not only the introduction of such 
dimensionless characteristic numbers, but also a knowledg~ of the 
experimental values of the dimensionless higher order coefficients Ct, 
D1, •.. , knowledge not at present available. 

Of all the many dimensionles similarity parameters arising from 
the higher order terms in the theory of the Maxwellian fluid, there is 
one and only one, the number 3 defined by (8. 1 ), which represents 
the ejfect of viscosity alone. AU the others are of the type (28. 1 ), 
being proportion alto the product p~uXn and thus indicating the impor-
tance of the interaction between the ejfects of viscosity and of thermal 
conductùm. 

29. REMARKS ON THE CLAusrns-DuHBI INEQUALITY. - The Clausius-
Duhem entropy inequality (A. 18) requires that in any admissible 
motion the dissipated power <P == cij dii == ti1 dji + p d\. shall be positive 
or zero. ln the classical theory of viscous fluids, <P is a quadratic 
form in dij; conditions that this form shall be essenlially positive 
yield the Du hem (54)-Stokes (5 5 ) conditions on the first order viscosity 
coefficients 
( 29. 1) 

The counterpart of these relations for the Maxwellian fluid is not 
clear. ln general, there are no ranges of values for the higher order 
viscosity coefficients such that <P o for arbitra,y ( 56 ) values of its 
various arguments di1' p ,i, etc., but such a condition would in any 
case be too strong, for the various arguments are -not independent, 
being connected in a complicated way through the equations of 

(li'•) [1901, 1, part 1, Chap. 1, § 3J. 
(li5) (Note, p. 136-137, of the 1901 reprint of [185r, 1]). 
( 56 ) The second order theory) for example, yields a cubic form for(!), and a 

cubic form can never be positive definite. 
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motion. lt is not reasonable to expect that the requirerpent <P o 
can be satisfied through the agency ofinequalities upon the coefficients 
alone. ln ordinary gas dynamics the differential equations admit 
solutions representing both condensation and rarefaction shocks, and 
the law of entropy increase is useù to show th·at the latter are 
inadmissible. Likewise the general theory of fluids may well lead 
to several possible solutions for a given problem ( 57 

), and the 
condition <P o may then be used to ,determine which of them be 
admissible. 

Similarly, in the classical theory the Clausius-Duhem inequality 
yields x o, but its implications for the Maxwe1lian fluid are not 
plain. 

50. CoMPARISON WITH BuRNETT's STRESS EQUATIONS. THF: EFFECT OF 

VORTICITY. - ln order to compare our expression (26. 13) for (2 ltij with 
the corresponding result ( 18. 12) which Burnett deduced from the 
kinetic theory of gases, we first notice that the basic hypotheses of 
that theory as ordinarily presented (5 8) yield at once 
( 30. I ) p == 1t == p ,n Or fi i + 3 p == 0, 
( 30. 2 ) p == R p 0. 

The kinetic theory is thus restricted to ideal gases whose mean 
pressure Pm always equals the thermodynamic pressure T.. 

The first consequence of (30. 1) is that all moduli À, p., C 1 , ••• become 
independent of pressure and reduce to functions of the temperature 

ratio :. only. For the special case of the coefficient p., this conclusion 

is one of the early consequences of the kinetic theory ( cf. § 9). The 
second consequence of (30. 1) is thafthe two first order and 19 second 
order coefficients- of viscosity in our expressions (26. 7) are reduced 
to eleven by the ten relations 

) 

31, +2p.==o, 
3 Dt+ 2 ci= o u ==- 1, 2, ••• , 6). 
3Ft + 2Et- o (i-=: 1, 2, 3), 

(30.3) 

( sï) Cf. § 12. 
( 58 ) E. G. [1939, 1, § 2.31, 2.32) 2.41, 2.42]. 
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of which the first is the classical Stokes relation ( cf. § 9 ). The 
foregoing remarks explain completely the reduction of first order 
coefficients from two to one, but in the Maxwellian fluid even 
after the reductions (30. 3) are applied there remain ten second order 
coefficients, while in Burnett's equations there are but six. Thus 
stiil further special assumptions are concealed in the kinetic theory 
analysis. An immediate comparison of our results with Burnett's 
equations ( 1.3. 12) is not possible, not only because of the awkward 
form in which these latter are expressed, but also since they contain 
the superfluous variable p, which must first be eliminated ( 59

) by the 
equation of state ( 30. 2 ). After this elimination is carried out, we 
find that we must write ( 60

) 

(30.4) 

2 C1 == - oJ2, 

2 C:: ==- fil;;, 

2C5==- oJ2, 

2 C2 == oJ2 - oJ4-, 

2C4 == oJ2, 

2 c6 == - oJ3, 

if we are to reduce our result to Burnett's. That is, in addition to 
thé ten relations ( 30. 3) we must impose also the foll<;>wing four 

(30.5) 

whose physical meaning is not apparent, nor is there reason to believe 
them correct. Chapman and Cowling's claim ( 61

) that Burnett's 
result contains " the only symmetrical and non-divergent tensors 
that can be formed from the elements involved " in the terms of one 
of their earlier expansions is simply false: in fact, the condition (30. 5) 
implies that their result contains the five symmetrical non-divergent 

(:59) Conversely, to show that Korteweg,s result (18. 11) is included in the 
stresses for the Maxwellian fluid, put p == /( 0, p ). 

( 60 ) ln this and the succeeding formula as presented in [ 1948, 1] and [ 1948, 2] 
there are errors in sign. 

(61) [1939, 1, § 15.3]. 
Journ. de Math., tome XXX. - Fasc. 2, 1951. 
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tensors ( 62
) f p,i •} 1p,1p . } {/i . } { (ùi wk.} and { di wk. l only in the l ,J , t ,J , ,J , k J k J , 

one combination 

Consider now a state of pure rotation, in which the rate of defor-
mation dij vanishes, the thermodynamic state is uniform, and the 
rotation (ùij represents a constant angular velocity (ù about the z-axis. 
Then from ( 26. 7 3) we have 

l 2w'.!.p. 2 

t·rx+ p == v·y+ p ==- ( F:i + E3 ), 

2W2 tL2 
l:::,:::, + p ==- __ ,-_-n F3, 

p 

(30.6) 

or, when Burnett's relations ( 30. 3) and ( 30. 4) are employed, 

( x _ ,. _ I W2 p.,/ J l .:e+p-l-_y+p-- 3uJ2-p-, 

l 2 W 2 !]-n 
-fil,)--· 3 - p 

Thus, according to Burnett's result, a state of pure rotation induces 
stresses whose· magnitude depends upon the viscosity of the 
substance. That is, if a cylindrical mass of fluid confined between 
two parallel plates be suddenly set into rigid rotation about an axis 
normal to the plates, the normal force upon the plates will depend 
upon the viscosity of the fluid. This result seems most improbable. 
While conceivably the rotation may affect the stress in the general 
case, it is hardly likely that rotation alone can produce an effect of 
viscosity. 

ln his review of a preliminary draft of this Memoir Professor 
Tsien ( 62a) wrote that " the author's doubt on Burnett's equations 

( 62 ) The notation is defined by (18.g). 
( 62a) (Math. Reç., t. 11, 1950, p. 623.) Tt may be ,vorthwhile to take note 

of the second ill-taken criticism of Professor Tsien : " The equations of motion 
used by the author are Eckarl's equations which are probab]y incorrect ''. No 
equations of motion are used in this Memoir, which simp1y der~ves expressions 
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derived from the kinetic theory is unfounded and arises from the 
neglect of pressure gradient in a pure rotation ". N ow I have never 
claimed that the stress ( 30. 7) arise in a flow dynamically possible 
according to Burnett's equation. I mean simply to point out the 
nature of the response of the fluid-at bottom, the indisputable fact that 
if p = const., p = const., dii = o, but wii o, Burnett's equation yield 
a stress proportional to fJ-n 2 w2, wich to me, at least, seems· a very 
strange way for a fluid to react ( 62 &). 

ln discussing results obtained by Enskog's method of integration 
of the Maxwell-Boltzmann equation, one must remember that the 
successive approximations are uniquely defined only in terms of a 
certain formai procedure which perhaps may not yield all terms 
involving t-t:~ at the m th stage. Thus the special relations ( 30. 5) and 
some of the Lerms in Wtj which appear in Burnett's equations may 
possibl y be cancelled by terms from as yet undetermined higher 
approximations. These remarks are offered as mere suggestions; 
I have not repeated Burnett's calculations, which seem formidable. 
The anomaly noticed above is not inherent in the kinetic theory 
treatment, for Professor H. Grad assures me that results obtained by 
his method ( 63

) of integrating the Maxwell-Boltzmann equation are 
free of it. While Boussinesq's equations ( 18. 3) con tain terms 
in vol ving the vorticity, he expressly stated that the viscous stresses 
must vanish in a pure rotation. ln M. Brillouin's equations ( 18. 7) 
and (18. 8) are vorticity terms, but, convinced from phenomenolo-
gical considerations that the rate of deformation dii should be the 
only kinematic variable upon which tij dépends (64

), Brillouin himself 
many times expressed his belief that for any conservative field of 
molecular forces it would be found eventually that the coefficients of 

for the stress and heat flux, expressions which can then be substituted into the 
equations of motion. 

( 62 b) So much so, indeed, that Professor Synge, misunderstanding my dis-
cussion of this fact in [ 19~8, 2 ], called it a " rather startling and physically 
improbable consequence of [ the author's J theory " (Math. Reç., t. 10, 1949, 
p. 214; see also the correction on p. 856). 

( 63 ) Loc. cit. (45 ). 
( 6'~) Cf. Stokes 's principle, § 3. 
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all terms containing wij vanished ( 65 ). The whole subject of the 
derivation of hydrodynamical equations from the kinetic theory 
deserves to be re-evaluated, clarified, and presented from a more 
general point of view in the commonly accepted tensor notation. 

ln any case, in the present memoir our definition of the Maxwellian 
fluid was left sufficiently broad as to include the anomalous result 
( ;30. 6) • only for purposes of comparison with Burnett's equations. 
Following the example of Boussinesq ( cf. § i8), we shall now 
complete our definition (§ 21) by strengthening the third part to 
read as follows : 

If all the vectors and te nsors l·n the list ( 21 . 2 ) wùh the exception 
of wii vanish, then tij reduces to - poij and qi reduces to ~ero. 

For the anisotropie fluid it follows that 

(30.8) 

where the symbols refer to stress and heat flux coefficients alike. 
For the isotropie fluid we have 

(30.g) 

3f. CoMPARISON WITH CHAPMAN AND CowLING's BEAT FLUX EQUATION. TuE 
BRILLOUIN EFFECT. - So much for the stress. Turning now to the 
heat flux, we find that our result ( 27. 2) con tains ten moduli, 
while the equations ( 1.8. 14) derived from the kinetic theory by 
Chapman and Cowling contain but six. To force them into 
agreement we must put 

(31. I) 3Si; == 301+202- 0;;, 
3U2==202-01i-. 

That is, if we are to reduce our-results to Chapman and Cowling's, 

(G 5 ) [1900, 1, § 1[,. (footnote), 23 (end), 27 (end), 3ft. (end), 39 (end).] 
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we must impose the following four relations upon the ten coefficients : 
(31.2) S1+3S3 ==0, S5==3U2+U1, 
(31.3) P2==0, S2==0. 

Now in the case of the stress, the special case derivable from the 
kinetic theory is sufficiently general that from it all the possible 
types of phenomena to be expected in the second approximation may 
be predicted. The specializations ( 30. 3) and ( 30. 5) simply express 
a certain linking of the magnitudes of the effects, a linking which is 
i~probable but not impossible, and may even be correct for a 
monatomic gas in certain circumstances. The two conditions ( 31. 2) 
imply two similar linkings for the heat flux. But the two conditions 
( 31. 3) are much more se~ious, for they indicate that in the kinetic 
theory result, two phenomena possz'ble in the Maxwellian fluid are not 
predicted at all. 

The first and more interesting of these phenomena is indicated by 
the term whose coefficient is P 2 : at sufficiently low pressures and 
sufficient(r high temperatures, heat jlow results f rom a sufficz'ently 
large pressure gradient eçen in the absence of a thermal gradient. 
This result is predicted by M. Brillouin' s equation ( 18. 8 ), 

sin ce r ,i == f'i - f :,: , and I propose that it be· called the B·rillouin 
eifect. The fact that in Brillouin's heat flux formula thè term in 
question is but one of 25, not specially distinguished in any way, 
may explain its never having been discussed in the literature, but 
our present analysis shows that the Brillouin ejfect is of first order 
in the viscosity coeffiâent, to the best of my knowledge now remarked • 
for the first time. Perhaps a neater form for our first order terms in 
the heat flux is given by the equivalent 

(31.4) qi==- x0 t+ P'·>P ï+ ... ' p , - ' 

The magnitude of the coefficient P 2 should not be difficult to estimate 
experimentally. One might measure the rate at which energy has 
to be ·supplied in order to main tain the surface of a body at uniform 
high temperature when immersed in a high speed air flow at low 
pressure. Unless 2 turns out to be very small, this effect may well 
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predominate over thermal conduction by Fouri~r's law in aerody-
namical phenomena at high altiLudes; in meteorological phenomena, 
however, it is probably nullified by the low temperatures of the 
upper atmosphere. 

W e should not omit to remark one example of the strange and 
arbitrary character of the kinetic theory result in that of all the six 
coefficients Si only S2 vanishes; that is, according to Chapman and 
Cowling's equations a pressure gradient or a thermal gradient in 
conjunction with deformation, expansion, or vorticity may give rise 
to second order thermal .flux in quite analogous ways, except that 
of all the possible combinations it is only that of pressure gradient 
and vorticity which is insufficent. 

52. CoNTRAST OF coNn~uuM AND KI~ETIC THEORY l\fETHoos. - The 
foregoing comparison (§ 30-31) of the results of the two approaches 
to the problem of determining the stress and heat flux in a rarefied 
gas indicate that the kinetic theory becomes less and less adequate 
for the ordinary prediction of gross phenomena the higher the degree 
of approximation required. W e may summarise the advantages of 
the two methods as follow : 

Advantages of kinetic theory : 

(a). ln its broader features, the molecular model more closely 
resembles the accepted picture of physical rnatter. This advantage 
is seriously reduced, however, by the extreme idealizations which 
-must be incorporated in the model if the calculations are actually to 
be carried out [ cf. (A) and (B) below]. 

( b ). The numerical values coefficients are predicted, while in a 
continuum theory these must be regarded as experimentally deter-
mined, even though their number may be so great as to put them 
beyond the reach of experimental methods. This argument is the 
strongest of all in favor of the kinetic theory. It can be answered 
only obliquely, in that the idealizations mentioned above are such as 
to render the kinetic theory results quantitatively inaccurate, though 
often still of very great qualitative usefulness. 

( c ). In principle, it should be possible to ~alculate boundary 



A NEW DEFINITION OF A FLUID. - THE MAXWELLIAN FLUID. 149 
conditions as well as equations of motion from the kinetic theory, and 
there have been several discussions and attempts in this direction (66 

), 

while to obtain boundary conditions in a continuum theory one must 
in effect postula te them. A satisfactory kinetic theory treatment has 
yet to be given, however. 

( d). ln a sufficiently general kinetic theory the model may be 
adj usted so as to yield different results for very rare gases ( 6 7 

), very 
dense gases ( 68 

), liquids, etc. [but cf. (A) below]. 
Advantages of continuum theory : 

. ( A). It is not restricted to perfect g:ises, to compressible fluids, to 
homogeneous substances, or to isotropie fluids. The ordinary 
Newton-Cauchy-Poisson law ( 18. 1 ), for example, is easily derived 
for all isotropie fluids by continuum methods. To obtain even a 
special case of this first approximation from the kinetic theory, 
however, it is customary to limit attention to a perfect moderately 
rarefied monatomic gas. The adjustments of the kinetic theory 
necessary to enable it to describe polyatomic gases, dense gases, or 
liquids are rather elaborate, and in some cases qucstionable. While 
indeed the values of the coefficients in the different cases differ from 
one another, the general form of the stress is the same, and it is not 
economical to employ so complicated a structure as the kinetic theory 
to obtain such gross results as the general form of stress and heat flux 
equations. 

(B ). Its results are free from the special relations among the 
coefficients which kinetic theory predicts but does not explain or 
jus tif y. On the other hand, it gives no hint of the numerical values 
these coefficients assume [ cf. ( b) ab ove]. 

( C ). The terms of any given degree in ~n may be written clown 
easily with little labor, w4ile even in the simplest kinetic theory for 

(GG) [1879, 1, §80, 83, 8!J.], [1924, 2], [1929, 2], [1932, 2, Chap. IX-X], 
[ 1947, 2, Cha p. V]. The results given in the last cited paper were criticised by 
Professor Uhlenbeck at· a lecture before the American Physical Society, New 
York, January, 1948, and have not received general acceptance. 

(G 7) [1930, 1, § {j, ], [1948, 7]. 
(!i8) [1922, 1, p. 18-19], [1939, 1, Chap. 16]. 
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monatomic perfect moderately rarefied gases the calculations incident 
upon use of Enskog's method of integrating the Maxwell-Boltzmann 
equation are elaborate, and increase enormously with the degree of 
approximation. With the continuum method, moreover, one may 
be sure of reaching at once ail terms of a given degree in !-Ln, while · 
by Enskog's method of integration there appears to be some uncer-
tainty in this regard. 

(D). Continuum theory, being independent of any sort of deter-
ministic mechanics of the ultimate particle, serves as a general guide 
with which any molecular model must be consistent. 

The arguments on either sicle are strong, and neither approach 
should be neglected. 
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