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( 1) I am obliged to the Office of Naval Research for supporting my preliminary 
studies under Contracts n°s la.5-~7 and 53-l,.7, and to the Applied Mathematics 
Branch, Mechanics Division, Naval Research Laboratory, for supporting the . 
completion of this and the succeeding Memoir; to Dr P. Neményi for presenting 
part of the material in Part II at the VII International Congress of Applied 
Mechanics; to Dr A. Van Tuyl and M. R. N. Schwartz for checking some of the 
calculations in Part li; to Miss Charlotte Brudno for her great assistance in 
preparing the paper. The methods used here were first announced in [ 1947, 1 ]. 
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13. 1-Ieuristic discussion of heat tlow. 
1!&.. Postulates for the heat flux vector. 
15. Thermally isotropie fluids. 
16. The form of the coefficient q;,. 
17. Provisional conclusions. 
APPENDlX. - Properties of continuous media in general. 

1. PRELIMINAR Y 01scouRsE. - For the description of aerodynamic 
phenomena at high altitudes the classical Navier-Stokes equations are 
no longer sufficient. It is generally believed, however, that up to an 
altitude of 1 ookm the air may be regarded as a continuous medium, so 
that what is required is a formula for the stress tensor more general 
than that forming the basis of the classical theory of viscous compres-
sible fluids but reducing to it when the pressure is not too low. 
Such an expression has been sought in the kinetic theory of gases ( ). 
But for gross phenomena in a continuous medium a gross assumption 
is preferable. History teaches us that the conjectures of natural 
philosophers, though often positively proclaimed as" physical laws ", 
are subject to unforeseen revisions. Molecular hypotheses have corne 
and gone, but the phenomenological equations of d'Alembert, Euler 
and Cauchy remain exact as at the day of their discovery, exempt 
from fashion. ln adopting a phenomenological and at the same time 
rigorously mathematical approach to the general theory of fluids 
I follow the path opened fifty years ago by the profound researches 
of Duhem. 

2. PttENOMENOLOGICAL METHODS. - To search out the true foundation 
of the theory of fluids, it is not to experiments of the laboratory but 
rather to ordinary experience, whence cornes our intuitive concept of 

Much of the material in Part 1, of ,vhich [ 1949, 7] is a preliminary version, 
I presented in lecti:ires at the University of Illinois, december 16, 1948; at the 
University of Toronto, february 4, 1949; and at the Institut de Mécanique de la 
Faculté des Sciences de Paris, june 9, 1949. Part II, of which [ 1948, 11 is a 
preliminary version, is partially summarized in [ 1948, 2], and was presented to 
the America! Physical Society, january 3o, 1948, New-York City; paragraphe 11 
was presented to that Society, j~nuary 28, 1949, New-York City. 

( ~) See·§ 18 of the succeeding Memoir. 
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fluidity, that our first questions should be directed. For the mathe-
malical realizalion of an elementary concept we are in no way more 
able than our forebears, those giants upon whose shoulders we stand 
like dwarfs who would leap over mountains. On the contrary, we 
have somewhat dissipated the wealth which they bequealhed us. 
But today we have a full knowledge of the rules of invariance, which 
permit us Lo attain in the mathemalical formulre the generality, 
simplicity, and elegance of the intuitive concepts we design them 
to represent, and from formai simplicity cornes what is called 
" understanding ". 

The basic method of this paper, which may be recommended for 
establishing an phenomenological theory upon a sound foundation, 
consists of two parts. First, simple and immediate experience is 
summarized in a formai defi'nùz·on of an z·deal medù1m, which is neither 
more nor less than a postulate of the existence of certain dz"mensz·onal 
quantitz"es and a speczjicatz"on of the functz·onal dependence of some of 
the quantùz"es upon others. It necd hardly be mentioned that in such 
a definition no special type of fonction, such as a linear or quadratic 
form, is singled out for preference. Second, the forms of the defining 
fonctions are rendered definite by a full use of the pn·nciples of inva-
rz·ance, both dt·mensional and tenson.al. From expansions of these 
fonctions in power series, any number of terms of which m~y be 
retained at will, complete dynamical equations of any order of 
approximation are an immediate consequence. 

5. HEURISTIC mscuss10N OF FLUIDITY. STOKEs's PRINCIPLE. - What then 
is a fluid? The most evident mechanical property of an isolated 
volume of water is that its shape depends largely upon the form of 
the containing vesse}, exhibiting no tendency whatever to re-assume 
any previous form it may have had; such a body is thus possessed of 
no fini te " Memory ". lt would be qui te wrong, however, to 
conclude that a fluid offers no resistance to deformation. Indeed, if 
we drag our hand rapidly through a body of water, even at constant 
speed, we experience marked resistance, while the same amount of 
deformation is easily effected more slowly. Even though offering no 
resistance to a permanent deformation, once effected, water does 

Journ. de Math., tome XXIX. - Fasc. 3, 1950. 28 
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indeed resist a change of volume, and no ordinary pressure can 
produce a sensible compression. If we altempt to compress a mass 
of air, however, we find that a slight pressure produces a considerable 
change of volume, but that when this pressure is removed the air 
quickly regains its original volume, provided the surroundings be 
otherwise kept constant. Euler ( 3) in effect defined a fluid as a body 
possibly endowed with elasticity of volume, but without elasticity of 
shape, and it was perhaps in this sense that Cauchy ( 4) in first giving 
the complete expressions for the stresses in a viscous compressible 
fluid spoke of " corps solides entièrement dépourvus d'élasticité ". 
The elasticity of shape of a compressible fluid is attendant upon the 
thermodynamic static pressure 7: === ît( p, 0 ), where p is the density 
and 0 is the temperat ure. In an incompressible fluid there is no such 
functional dependance for the static pressure (5 ). In all types of 
fluids the remaining portion ,ij of the total stress tih 

( 3. I) • 

is that which arises in resistance to instantaneous change of shape, 
and thus evidently depends upon it. This concept of fluidity is 
embodied in Stokes's pn·nciple ( 6) : " That the difference between the 

( 3) Euler [ 1769, 1, § 1, 13, 2la.] defi ned a fluid in terms of three phenomena : 
1. " Si fluidum a vi quacunque pressum in éequilibrio versetur, tum pressio per 
totam fluidi massam ita éequaliter diffunditur, ut omnes ejus particulre parem 
vim sustineant. ,, 2. " Alia fluida ita comparata deprehenduntur, ut quan-
tumvis magna vi premantur, idem semper volumen retineant : alia vero hujus 
sunt indolis, ut quo majori vi premantur, in eo minus spatium redigantur, 
antequam ad éeq11ilibrium perveniant : in utroque au.tem genere proprietas 
fluiditatis ante memorata éeque Iocum habet. ,, 3. " Omnis generis fluida a 
calore in majus spatium expandi) a frigore autem in minus spatium contrahi 
experientia declarat, quatenus quidem ob vires sollicitantes hoc fieri licet. " 
His discussion [ § 2-12] of 1 reveals that he regarded a fluid as a body without 
elasticity of shape. An earlier formulation may be found in [1757) 1, § VI-XIXl. 

(;) [1823, 1], [1828, 1, § III]. See)§ 18, however. 
(;;) For a discussion of the various pressures, and a hasty exposition of these 

properties of continuous media in general which are employed in the present 
paper, see the Appendix below. 

( 6) 118~5, 1, § 1]. For the history of the fondamental equations of the 
classical theory, see § 18 of the succeeding Memoir. 
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pressure on a plane in a given direction passing through any point P 
of a fluid in motion and the pressure which would exist in all 
directions about P if the fluid in its neighborhood were in a state of 
relative equiiibrium depends only on the relative motion of the fluid 
immediately about P; and tbat the relative motion due to any motion 
of rotation may be eliminated without affecting the differences of the 
pressures above mentioned. " Now the measure of the rate of defor-
mation of a medium was show by Euler (7) to be the tensor 

(3.2) l . I ( . . . . e,l·=:_ _ Xl ·+ x-,l) 
/ 2 ,/ / ' 

where xi is the velocity vector ( 8 ). - Since the tensor 

(3.3) 

was shown by Cauchy (9) and Stokes (1°) to be a measure of the 
local and instantaneous rate of rotation ( vorticity) of the medium, 
dir== xi,i_ wij is indeed the measure of " relative motion " after the 
rotaLion has been eliminated. Thus in modern terms Stokes's prin-
ciple in its full generaliiy ( 11 ) is simply 
(3.4) vïr== j(dkt), /(o) == o. 

These equations were used as the defining property of fluids by 
Reiner ( 12 ) and Rivlin (1 3). Since in general the rate at which the 
stress dœs work (per unit volume) is tij dji, from ( 3. 41) we have the 
scalar equation 
(3.5) tïjdi(==g(dk,). 

(7) [1770, 1, 9-12j. Equivalent analyses were given by Cauchy [1827, 1, 
p. 88-93] ( for infinitesimal strain) and Stokes [ 1845, 1, § 2]. 

( 8) We employ the ordinary notations of the absolu te differen tial calcul us, 
as presented e. g. in [ 1927, 1 ]. 

( 9) [1841, 1, th. IV]. 
( 10 ) [ 1845, 1, § 2]. 
( 11 ) After stating his principle, Stokes himself [ 1845, 1, § 3] by an argument 

referring to the ultimate molecules concluded that the fonctions ( 3. 4) should 
be linear. 

(12) tig45, 1, § 2J. 
( 13 ) [1947, 2j, [1948, 4, § 91, 
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Thus an equivalent formulation of StokPs's principle is : the stress 
power ù ajunctz'on of the rate of deformatùm only. 

4. HEURISTIC 01scuss10N OF vIscos1TY. - The phenomenon embodied 
hy ( 3. 4) is called vùcosity, and the stresses ~,ii are called viscous 
stresses. ln dimension al form ( 3. 4t) becomes 

a relation manifestly impossible wi.thout the insertion of a further 
dimensional quantity, say, P. That is, in place of ( 3. 4t) we must 
have 

(4.2) 

or, dimension all y, 

( 4.. 3) 

where dim P is such that a dimensionless ratio 

(~rT~ 
dimP ' 

can be formed. Consequen tl y 

(4..4) dimP== M:xL-:xT~-:n. 

Choice of one of the exponents is equivalent to raising P to an arbi-
trary power, and hence one exponent may be given any convenient 
value. Taking ry_ == I, we have 

( r., . 5 ) di m P == (.) . • 
LT"-r' 

The number rcmains arbitrary. The phenomenon of resistance, 
therefore, requircs a nearer analysis. 

According to the celebrated hypothesis of Newton ( 14 
), as refor-

mulated by Maxwell ( t 5 ), when a viscous fluid is confined between 

(H) [1726, 1, lib. II, sect. IX]. 
(H) [1866, 1, p. 7-8], [1871, 1, p. 277-278]. 
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infinite parallel plane boundaries which are in constant relative notion 
at a velocity x, the walls experience a retarding force according to 
the formula 

force 
area == /J· distance between walls' 

where tJ. is a quantity called the coeifiàent of vùcosùy, which is inde-
pendent, of the other magnitudes in the formula, but dependent upon 
the particular fluid. The dimensions of tJ. are ML -i T-1

, corres-
ponding to the choice == 2 in ( 4. 5 ). -w e are not concerned here 
with the exactness of ( 4. 6); suffice that a crude actual experiment 
indicates it to be a rough approximation, for our only purpose at the 
moment is to indicate that a quantity 11. of dimensions ML- 1 T- 1 should 
enter the definition of a fluid. 

Now this viscosity p. is a manifest fonction of the temperature 0, 
and more generally may be supposed to be a fonction of the thermo-
dynamic state 
(4.7) [J-==f(p, 0). 

But this relation connects three quantities composed of the three 
independent dimensions ML - 1 T- 1

, T, an_d 8, a11d hence cannot 
subsist unless some of the variables be struck out or c1se other quan-
tities composed of the same dimensions be inserte<l. The only 
alternative to tJ· == const. is then to introduce new quan tities. At first 
sight it would seem reasonable to propose 

where p.0 , p0 , and 80 are certain reference values of p., p and 0, charac-
teristic of the particular fluid. Now dim p 0 == ML-1 T- 2 , so that Po 
is an elasticity. But if there be both a viscosity p. 0 and an elasticity Po 
rP-presenting properties of the fluid, then the quantity fl-o must also 

Po 
represent a property of the fluid. Now /J-o is of the dimension T: any 

Po 
substance with a natural vùcosity and natural elasti"city possesses also a 
natural time, and must necessarily be susceptible of time dependent 
phenomena, sueh as relaxation effects. These effects are expressly 
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excluded by our initial statement that it is contrary to experience for 
a fluid ( as we simply conceive it) to exhibit any response to a confi-
guration assumed a finite time in the past ( 16 ). Hence we may either 
adopt the usual expedient of excluding p allogether from ( 4.? ), as is 
clone implicitly at the outset in the ordinary kinetic theory of gases, 
or embracing a more liberal view we may seek another scalar quan-
tity of the dimensions of p, but not a constant of the fluid. Such a 

quantity is readily found in the mean pressure Pm== - j • ln place 
of ( 4. 8) we have then 
(4.g) ( JJ O) P. == P.o f - ' • Pm Oo 

Recall that from the basic definitions usually employed in the kinetic 
theory of gases follows at the outset the confluence of these two 
pressures. It is not surprising that one of the results of that theory 
is that p. is independent of the pressure. 

All the remarks of this and the preceding section are heuristic, 
serving only to motivate the formal definition of a fluid which 
follows now. 

a. DEFINITION OF THE STOKESIAN FLUID. - A Stokesian fluid is a conti-
nuous medium such that : 

1. There exist materz·az constants !-1·n and 00 , called respectù:ely the 
natural viscosity and the reference temperature, whose dimensions are 

( J. I) 

( 5. 2) 

d. M 
1m [J-n== L T, 

dim0o== 8-

II. The stress power is of the f unctional form 
(5.3) 

and is an analytic functl·on of the components dkt· 

Ill. If dkz== o then 
(5.4) 

( 16 ) As Cauchy [ 1828, 1, § 1111 expressed it, " l'élasticité disparaît entiè-
rement''. 



A NEW DEFINITION OF A FLUID. - THE STOKESIAN FLUID, 223 

where f o'r incomprem"ble flul·ds p is an unspecified scalar, white for 
compreSSlble jluids pis the ihermodynamic pressure p == p(p, 0). 

Note that P.n is a constant, not a fonction of the thermodynamic 
state, and thus must not be confused with the ordinary coefficient of 
viscosity p.. Rather, it is to be regarded as the dimensional part of p., 
and we shall see later [ cf. equat. (7. 8)] that in fact p.= 11•n/(fm·, f,), 
where the function / is dimensionless. 

6. IsoTROPIC FLmos. - Since du is symmetric, from ( 5. 3 ), and the 
assumed analyticity of tij we have 

( 6. I) 

where k,.h ///, ... are certain tensors independant of dij· By ( 5. 4 ), 
kir== - p 2/j. A fluid will be said to be ùotropic if the matrix t of tij 
be a fonction of the matrix d of dij : 

(6.2) 

where the ki are scalars independent of d. From this definition it 
follows that in an isotropie fluid there are no preferred directions of 
response : 

t' i must depend upon d1
1 in exactly the same way that t2 

2 depends 
upon d 2 

2 , ••• , in eçe1y co-ordinate system, and the principal axes of 
t coïncide with those of d. Reiner C 7) has given an elegant reduction 
of the series ( 6. 2) to a simpler form by observing that the Cayley-
Hamilton equation yields 
(6.3) da== Id d 2 - Ildd + IIldl, 

where Id, Ild, Illd are the principal invariants of d, so that the third 
and all higher powers of d may be eliminated from ( 6. 2 ). Thus 
(6.4) 

where 3'0 , 5'0 and ffe:2 are fonctions of the principal invariants. ln 
component form, 
(6.5) tlj== 5-'o oij+ 5-'1 dij+ 5-'2 dlk d\. 
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The definition of paragraph 5 neither mentions nor requires 
isotropy, but in the present paper we shall confine our attention to 
this special case in the interest of simplicity. ln the succeeding 
paper, our method is applied more gènerally. 

7. -THE FORM OF THE COEFFICIENTS 5 0 , §i' 0 Si' 2 • - From ( 5. 3) we have 
no,v 

. . ::.Y. ::.Y. 1 ::.Y.') p . . But the quanllt1es __(), - - --=-:, are d1mens10nless. 
p [J-n f1-; 

It follows that the 
relations 

(7.2) 

wich connect eight qua~tities composed of the three fondamental 

dimensions ~' T, and 8, must reduce to relations connecting 
LT 

8 - 3 == 5 dimensionless ratios of these quantities. The desired 
ratios rise beneath our hands : 

( 7. 3) P.n I fl-~ Il d, 9 d, 
P r 

If then we introduce the dimensionless coeffü;ients Fr : 

we have 

(7.5) F -J'(fl-n I f1-; II fl-~ III lj a) 2- -- d, ------:; d, 1 d, -, n ' p p- p· Pm Vo 

where the fonctions F1~ require only dimensionless constants for their 
full expression. Putting (7.4) into (6.5 ), we thus reduce the theory 
of the Stokesian fluid to the definite form 

<) 

(7.6) l i - F "i. F di. ' f1-;p di dk. j - p o O J + fl-n 1 / -;- -- 2 k J, p 

where F. ( o, o, o, :m, i) =- I, 
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So as to fix our ideas upon this result let us write out explicitly 
the terms of first and second order (1 8) in the viscosity f-Ln : 
( 7 • 7) tij =::. - p Ôij + [-Ln [ A Id Ôij + B dij J 

+ f~[Cià.oij+Diddii+Endaij+ Fdikd\]+ ... , 
p 

where A, B, F are dimensionless fonctions of -(JO and ..J!_ only . • • • ' o Pm 
For conformity with the classical notations, we may define the hnear 
coefflcz'ents of viscosity ) .. and p. : 
( 7 . 8 ) /\ == /J-n A, 2 [J. === [-Ln B. 

The terms of degree o and I in P·n, in the series ( 7. 1) now become 
thé Newton-Cauchy-Poisson law, which forms the basis of the 
classical theory of viscous fluids. C, D, E and Fare the four dimen-
sionless coefficients of viscosity of second order. 

At the commencement of this Memoir I spoke of the need for an 
expression for the stresses in a fluid medium at low pressures, but 
since then I have not mentioned the malter again. Instead, I have 
only given a precise form to our ordinary concept of fluidity, and 
here is the result : an expansion in reciprocal powers of the pressure, 
to which we have been driven simply by the irrefutable force of the 
principles of invariance. The linear terms are exactly those of the 
classical theory. The terms of higher order can become significant 
only at sufficiently low pressures. 

More generally, let us write the power series for 1 he dimensionless 
coefficients Fy in the form ( 1 !l) 

(7.g) Fr=::. Fr:J;J:K [-Ln Id L P-~: Ild p.~ IIId L ' ( ) 
ï ( 2 );J ( 2 ) 'I{ 

/ ,P p: p-l 

( 
/J- )3+2;J+:;:,C =::.Fr:r;pc pn I~II~III:, 

( 18 )These second order terms, but with coefficients unspecified in form, are 
included in a more general resul t [ equat ( 18. 3) of the succeeding memoir J 
given by Boussinesq (1868, 1, Note I ]. Five of the six terms of third order, 
again with coefficients unspecified in form, are derived by Girault [1931, 1, 
Cha p. Ill], whose work is discussed in § 12, ( 2ï ). 

( 19 ) ln th is paper a diag-on~lly repeated index, whether tensorial or, not., is 
always taken as summed over its full range of variability. Thus e. g. in (7 .g) 
all three indices .J, :J-, JC are summed from o to oo. 

Journ. de Math., tome XXIX.- Fasc. 3, 1950. 
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where the dùnensz·onlesss coefficients of vùcosùy Pr,1~,:,c are fonctions 

of Land -0° only 
Pm o 

(7. 10) F /(
1 

Pm G) l'.Jj.'"K == - ' -- • p Oo 

The coefficients of ( 7. 7) are related to th ose of this full expansion as 
follows 

Foooo == - l, I. == [J-,n A == [J-n Fo100, 2 [J- =--::: [J-n, B == [J-n F1000, 

C == Fo200, D == F1100, E == Foo10, F == F 2000• 

If Fuoo o the fluid is viscous, as we shall henceforth assume. 

8. DvNAmCAL srnILARITY. - By the ordinary rigorous method of 
affine transformations it is easy to deduce criteria for dynamical 
similarity for the Stokesian fluid. ln addition to the Mach number, 
the Reynolds number, and the other dimensionless characteristic 
numbers of the classical theory, we obtain also the number jJ : 

- /J- d ]==-, 
p 

where dis a rate of deformations, frequency, expansion, vorticity, or 
reciprocal of a time wich is characteristic for the class of motions 
being compared. N ow in the classical linear theory no such quantity 
as d occurs in the complete set of parameters for local dynamic 
similarity ( although for certain classes of motions such a quantity 
may occur in parameters governing similarity at boundaries ). ln a 
general Stokesian fluid however, a time, freq~ency, expansion, or 
vorticity must always be taken into account in considerations of 
similarity, and furthermore this quantity is the only new dimension al 
parameter which need be employed no matter how many higher 
order terms in (7. 7) are retained, for the only new characteristic 
numbers beside·s jJ to which these give rise are ratios of the several 
dimensionless coefficients, viz. 

(8.2) Fr.1Jx 
F1000. 

Thus the classics.l linear theory altogether neglects one effect of 
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primary physical significance : although it is to represent dynamical 
phenomena in fluids, all the variables which occur in the consequent 
numbers governing dynamic similarity are statz'cal quantities ( in the 
usual Eulerian description), so that it would seem that time rates are 
of secondary importance in the structure even though they alone are , 
considered in its basic dynamical la-,vs. This slrange quality results 
only from omitting the higher order terms in ( 7. 7 ), and thus is not 
proper to the Stokesian concept, but a mere accident of the classical 
linearization. From a physical point of wiew we may say that in 
the general theory here presented time rates play the dominant part 
we should expect from the concept of fluidity, and that moreover 
this part is essentially the same no malter how many terms in the 
series for the stresses are retained, so long as they go past the linear 
terms. 

'To grasp the significance of this ne,v effect, consider a case in 
which the higher order terms in (7. 7) are not negligible, but yet act 
only as small perturbations. 'Then if motions of two different 
Stokesian fluids be compared, it is not unreasonable to suppose that 
the effect of different values of the higher order coefficients A, B, ... 
for the two fluids may be neglected, so that JJ becomes the only 
characteristic number which need be added to govern the effects of 
the perturbing terms. Suppose now we have two identical vessels 
containing specimens of the same fluid, which we place in a vacuum 
at the same altitude above sea level. Let cocks be opened so as to 
permit the fluids to escape, and al suitable corresponding points in 
each issuing jet let measuremenls be taken. Suppose the velocity, 
density, and temperature at these corresponding points be found 
identical in each. 'Then all the criteria for dynamical similarity in 
the classical theory are satisfied, and while in the absence of a uni-
queness theorem we cannot actually prove, yet we may with some 
confidence expect, that the two flo,vs will be altogether identical. 
In the case of the Stokesian fluid in order to gain the same expectation 
we must first verify that, say, the corresponding vorticities are equal, 
or that the total times of efflux are equal, etc. In other words, two 
samples of a Stokesian fluid issuing from identical vessels under 
identical statical conditions at a typical point may require quite 
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different times of efflux. This greater freedom arises mathematically 
from the fact that the dynamical équations for the Stokesian fluid are 
of higher order than the Navier-Stokes equations, and it is possible 
for the two motions to be started in different manners. 

Now in general in order te consider dynamical similarity one must 
know the following properties of the fluz"d 

(8.3) 

and the following properties of the particular flow at certain corres-
ponding points 
(8.4) p, p, !, j•, d. 

Note that there qre but ffre of these latter, no malter how hzgh an order 
of approxùnatz"on for the stresses be selected, and that in the classical 
lz"near theory one of these ( d) may be neglected; while the higher the 
order of approximation in the stress formulae, the greater the number 
of properties· of the Jluid which must be ascertained. 

If we may suppose that all the dimensionless coefficients Fr.1jx are 
of the order of I or less in absolute value, then a criterion for the 
validity of the ordinary linear theory is simply 

( 8. 5) 

That is Lo say, the higher order terms are appropria te to a combination 
of high viscosily, high rate of deformation, or low pressure. The 
first two effects are in some measure conlradictory, though in any 
case we ma v notice that since the rate of deformation of Len becomes 
infini te at a singularity, the results of the classical theory cannot be 
regarded as meaningful in its vicinity; but to find the third, one need 
only ascend the atmosphere. A numerical example is instructive. 
For water al I a,m, in order for jJ to reach the order of I the rate 
of deformation d must be of the order of 7. I0 5 sec-·1

; our higher 
order terms, then, can be significanl only. for very high frequency 
oscillations. But on the contrary, in the upper atmospher-e there are 
very low pressures, which can render our higher order terms of 
predominant importance even for ordinary rates of deformation. 
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9. MEAN PRESSURÈ AND THER:MODYNAl\lIC PRESSURE. - Most treatments of 
fluid dynamics employ the assumplion p == Pm, alLhough it is supported 
neiLher by sound theory nor by experimrnt and effects but slight 
simplification of the resulting equalions. By ( 7. 8 ), an immediate 
consequence is that all the coefficients of viscosit y Fra'JX become 
independent of pressure. Il is sometimes claimed that in the kinetic 
theory of gases il is proved that µ is independent of p. Since the 
basic definitions of that theory (2°) as usually employed imply p == p:11 

at the outset, the result is not surprising. 
ln the general case, by-(7. 6) and (7. g) we liave 

where the terrn containing F 0000 in the sum on the right is Lo be 
omitted. ln the classical linear theory ~ve have p Pm in an expan-
ding motion and p LPm in a conlracting motion, but (9.2) shows that 
if the number JJ, as given by (8. 1 ), be sufficiently large, the sign 
of p - Pm may be that of 3 C + D + F, irrespective of whether the 
motion be expanding or contracting. 

A necessary and sufficien t condition that p = P:n in all motions is 

(9.3) 3Fo.J'JX + F 1 ,.1_1,'J, JC + F 2.:c"2.:J.:1c - 2F2 ,.1,:1-1.:K == o. 

The first few cas.es sspecial are 

{ 

3À + 2p. ==o, 

(9.4) 3c +D+F o, 
3E- 2F -o, 

of which the first is the classicàl Stokes relation. Now in the 
classical theory the Stokes relation in also a necessary and sufficient 

( 20 ) Cf. § 20 of the succeeding Memoir. 
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condition that a motion of uniform dilatation d1·j== d t)j can take place 
without dissipatio'n of energy. ln the general theory it is easy to 
work out a condition for this most improbable phenomenon, similar 
in form but not identical with (9. 3 ). 

10. CoNTRAST WITH ELASTICITY. - From the formai analogy between 
Cauchy's generalization of Hooke's law and the classical linear terms 
of ( 7. 7) hast y persons sometimes erroneously conclu de that a proper 
generalization of the equations of elasticity simultaneously yields a 
proper generalization of the Navier-Stokes équations. Since fluids 
and elastic solids, being the very extremes of possible types of 
deformable continua, embody entirely diffe.rent mechanical concepts, 
such an analogy would be surprising; that it exists in the classical 
theories is in fact an accident attendant upon linearization. Compa-
rison of ( 7. 7) and the corresponding expansion for the stress in the-
general theory of elasticity ( 21 ) shows their entirely different form 
and character as soon as the first terms of higher order are considered, 
a difference reflecting the fact that strain is dimensionless ( 22 ) while 
rate of deformation is of dimension T-1

• ln the classical linear 
theories, the elastic stress is the gradient of the elastic energy with 
respect to the strain, while the viscous stress is the gradient of 
Rayleigh's dissipation fonction with respect to the rate of deforma-
tion. Neither property carries over in a rational generalization. ln 
the theory of elasticity the Eulerian stress tij remains expressible in 
terms of derivatives of the elastic energy with respect to the strain, 

( 21 ) E. g. [1937, :1, p. 251]. 
( 22 ) Thus the criterion for the validity of the classical linear stress-strain 

relations in elasticity is simply that the strain be small, in contrast to the more 
complicated criterion (8.5) for the validity of the classical linear expressions 
for the stress as a fonction of the rate of deformation in fluid dynamics. Several 
authors [ 1874, 1, p. mg], [ 1888, 1, § 4.66 ], [ 1931, 1, Cha p. I ], [ 1933, 1., p. 35g], 
[ 19~5, 1, p. 355] in pursuing a false analogy hetween elasticity and fluid 
dynamics have spoken of " small velocities '1, " small relative ve1ocities ", and 
" small rates of strain '', etc. in the present connection. Sinc~e none of these 
quantities is dimensionless, the statements are meaningless, except perhaps as 
loose references to a limit process. 
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but no longer as a simple gradient. In the present theory of fluids 
the viscous stresses are no longer derivable from any scalar by diffe-
rentiation, and no Rayleigh fonction exists. To prove this last 
statement we need only observe that a scalar fonction of d alone can 
con tain ( in the isotropie case) at most three ter~s of third order in 
the components dij, since 1~, Idlld, and Illd form a complete set of 
third order invariants of d. An expression derived from a Rayleigh 
fonction by differentiation can then contain at most three third order 
coefficients of viscosit y, while in ( 7.?) there are four. As more 
terms, are considered, the discrepancy in numbPr increases, and the 
difference in form becomes more striking, a difference to be expected 
because of the different physical situations considered. The non-
linear theories are thus of greater conceptual clarity than the classical 
linear theories, whose simplicity is misleading. 

1.1.. THE REINER-RIVLIN FLUID. - Reiner ( 23
) bases his general theory 

of fluids upon Stokes's principle, and hence for an isotropie fluid 
obtains an expression of type ( 6. 5) for the viscous stresses 

(11. 1) 

where §10 , 3i'q ff12==/(Id, Ild, Illd}· Rivlin (2 4
) gives a similar 

analysis for incompressible fluids, and hence obtains 

( 11. 2) 

where 3'u ff12 == /( Ild, Illd); here the term 5' 0 'è/j has been incorpo-
rated into the arbitrary pressure - p 'è/j. According to Reiner, the 
coefficients '' while generally be fonctions of the hydrostatic pressure 
or of the density of the material, " while accordiug· to Rivlin the 
coefficients in the povver series expansions of the 3i'r are " constants 
characterizing the fluid considered. " Both aulhors imply also that 
these coefficients depend upon the temperature. 

Now 
(11.3) 

( 23 ) [ I 945, 1]. 
( 24 ) [1947, 2], [1948, 4 ]. 
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Hence if the leading coefficients 5' 2 (0, o, o) and §;' 1 (0, o, o) in the 
power series for §i 2 and §i 1 be material constants, (1 i .3) demonstrates 
the exùtence of a natural time ln in the Reiner-Rivlin theory. Similar 
reasoning does not apply to the Stokesian fluid, since the coefficients 
St r .11x in the series for the St r are generally not material constants. 
Neither Reiner nor Rivlin commenls upon the dimensions of any of 
the terms, but I believe it a fair interpretation of the quotations above 
to conclude Lhat both imply the existence of material constants having 
the same dimensions as the coefficients §i rajx in the power series for. 

the St'r. For a fluid with a natural ti1ne t11 , the ratio i'J·n is also a material 
ln 

constant, and since dim P·n == ML-1 T-2 , we may say that the Reiner-
ln 

Rivlin theory concerns fluids having a natural elasticày ( cf. § 4 ). 
To give a complete formal definition of the Reiner-Rivlin fluid, vfe 

simply make two additions in the definition of the Stokesian fluid in 
paragraph 5 : First, add a third maten·al constant ln such that 

(11.4) dim ln== T; 

second, z·n place of ( 5. 3) suppose 

(11.5) 

Then for the coefficients ~T- 0 , 5' 1 , §i 2 of an isotropie fluid in place of 
( 7. 1) we obtain 

(11.6) 

The relations of the type (7. 2) now connect nine quantities composed 
of three fondamental dimensions, and therefore must reduce to 
relations connecting g - 3 === 6 dimensipnless ratios of these quantities. 
A simple set of six· such ratios is 

11 I 2 II :i Ill ptn p e ( . 7) ln d, ln d, l 11 d, - ' - ' -0' 
{-J-n Pm O 

rather than (7. 3 ). In place of the dimensionless fonctions F 0 , F 0 

F2 gi ven by ( 7. 4) it is now preferable to u_se those resulting from 

multiplying them by the dimensionless quantities ptn, 1, and ~, 
{-J-n pln 

respecti vely. 
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ln place of ( 7. 6) and ( 7. g) we nov\' obtain 

(11.8) 

·where the expressions of the coefficients F'r· are 

(11.g) 

l t'fi • b • d. • 1 f' • f' ptll p (j t 1e coe 1c1ents F 1•3 j:ic emg 1mens10n ess unctwns o - , - , fJ • 
- /J-11 Pm u 

By (5. 4), F'0000 == o.. Here too the classical Newton-Cauchy-Poisson 
law results if only the linear terms be retained. Notice also that the 
classz·cal vùcous compressible jluùl ù the lz'mzûng case ln -+ o of the 
Reincr-Rt"rlin Jluz·d. 

For the Reiner-Rivlin fluid it is not the number ,3 defined by (8. 1 ), 
but rather the number \il,. : 
( 11. IO) llr == ln d, 

which is of primary importance in similarity considerations. The 
criterion for the validity of the classical theory becomes lt,.~ 1, or 
t~ 1 d : the classz'cal them:v becomes inadequate as the vorticày or the 
rate of déformaûon approaches the natural f requency t~ 1 of the jluz'd. 
Thus the higher order terms in the Reiner-Rivlin theory represent 
'' memory ,, effects, while those in the theory of the Stokesian fluid 
are appropria te for a fluid without '' memory " suhjected to low 
pressures. 

12. AN EXAMPLE : SHEARING FLOW. - To illustrate the difference 
belween the Stokesian and Reiner-Rivlin fluids, we now consider the 
case of a rectilinear shearing flow 
(12.r) x==/(y). r==o, :;==o; 

following the analysis of Rivlin ( :! :; ). Ali the components of d except 
d:c.r == d/:c vanish 

0 !_ f' 0 
2 

(12.2) d== !_ f' () 0 
2 

0 0 0 

Journ. de ;Jf ath., tome XXIX. - Fasc. 3, 1950. 3o 
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and we have 

(12.3) 

By (H.2), then 

C. TRUESDELL. 

I 
Ild-- -/'2 - 4 ' 

l v'-'.t·== , •• ,·_,(· ::,~ - )~/} 

,.e,.==~T-1 - -, 0 -• • \ 4 2 

Notice that , .i·:r is an odd fonction (2 6) of dt·.n ,vhile "'.,·,i: and c-\ are 
e,,en (2·) fonctions of de_,. Sin ce xi== o, when f = o the dynamical 
equation become simply tiJ,r=== o. Hence ,,.l\=== C,, where C1 is a 
constant specifying the uniforrn resistance per unit area. Thus 
( 12. 4:i) yields 

(12.6) 

Thus such a flow is possible only when the ratios fl-n, -0
6 , and Pp are 

pln o m 

fonctions of y alone. For simplicity, suppose indeed that the coeffi-
cients F10.:10 may be taken as constant. Then for any finite approxi-
mation, there are an od_d n umber of possible velocity profiles f' 

( '.!G) Cf. § 18, ( 12 ) of the succeeding Memoir. 
( 27 ) 1-Iere we may t8ke note of the theory of Girault [1931. 1, Chap. III], who 

attempted to generalize the Navier-Stokes equations by means of Stokes,s 
principle, but at once added the assumption that when a flow is reversed ail the 
stresses change sign. Thus he concluded that no terms of even degree in the dii 
can occur in the general expression for tii. Premise and conclusi~o are alike 
false. ln the shearing flow under consideration, for example, if the flow if 
reversed the shearing stress tr:x should indeed change sign, but if the cross stress 
t-"y should ch~rnge it would imply the absurd conclusion that if pressure upon 
the y== const. planes be required to maintain such a flü\v from left to right, 
then tension is required for a ·similar flü\v from right to Ieft. Girault's theory 
fails altogether to reveal the basically important phenomenon of cross-viscosity, 
and its application by Viguier [ 1947, 3] to boundary layer problems thus cannot 
yield correct results. 
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satisfying ( 12. 6) and yielding the same value of the resistanèe C1 : 
all are lin~ar. ln the case of a second order theory only the classical 

f == 2
~~Y + C 2 is possible, (2 8 ) but in a third order theory there may 

[J-nr 1000 . 

be one or three pro.6les, depending upon the values of C1, F1000, F1010, 

P.n, and tn. lt is not unlikely that of all the possibilities for agi ven C1 
only one will satisfy the thermodynamic requirement that the 
dissipation of energy be positive ( 29 

). In any case the pressure p is 
determined from the equation 

. , !'"2 \ 1'"2 
cy==-p+g2(- 4, o) 4 ==Gi, 

where C 3 is a constant. Since f' is constant, p may assume an 
arbitrary constant value. Just as in the classical theory, then, we 
may select the pressure and the specific resistance at will. The 
general case is distinguished by : (A) Cross-vùcosù_y : a normal stress 
vYY must be exerted on the shearing planes in order to producc the 
flow, and there is a normal stress v,,·x in the direction of flow, and 
( B) Multiplt"cüy of solutz'on : more than one linear velicity profile 
yielding the same resistance, but different cross-stresses, may exist. 
Notice that the resistance as a fonction of the profile f', which is the 
classical subject of measurement, is independant of the second coeffi-
cient Si' 2 , and its departure from the classical value ù an ejfect of third 
order in the number lll,.== tnd; the second order ejfect of cross-vùcosùy 
depands only on Si' 2 and has no influence upon the result of the classz"cal 

measurement. So much for the Reiner-Rivlin fluid. 
For a similar flow in a Stokesian compressible fluid, again we 

deduce ( 12. 4 ), but by (7. 6) and ( 7. g) these conditions now take the 
form. 

(12.8) 

( 28 ) Boussinesq·[ 1868, 1, Note I] observed that in a second order theory the 
resistance is the same as in the classical theory. 

( 29 ) Cf. § 29 of the following Memoir. 

3o. 
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The possible velocity profiles f' now depend upon the pressure p as 
well as the resistance C1; or, otherwise expressed, for a gù·en velocüy 
profile f' the resistance depends upon the pressure. As the pressure is 
reduced, the resistance is diminished, as should be expected in agas. 
Both in the classical theory and in the second approximation we have 
(J.n/' F1000 ==. 2 cl, but in the third approximation the resistance lS 

diminished by l'-;;_~,~~;
01

"
1

" /rom the value predicted by the classical theory 

for the same velocity profile j'. 

15. HEURTSTIC n1scussION OF HEAT FLOW. - In order to salve nearly 
any sort of boundary problem concerning a compressible fluid it is 
necessary to employ not only the dynamical equation but also the 
energy equation. Since the energy equation contains the heat flux 
vector qi, some sort of definite form for this vector in terms of the 
other variables is required. 

Now the flow of heat is most evidently associated with temperature 
differences. According to the celebrated hypothesis of Fourier ( 30 

), 

when a conducting material is confined between infinite parallel plane 
boundaries, which are maintained at a constant temperature difference 
d0, heat energy must be supplied at a rate given by 

heat flow ~0 
area == - x distance between ,yaJls' (13.1) 

where xis a quantity called the coefficient of thermal conducûrày, which 
is independent of the other magnitudes in the formula, but dependent 
upon the particular substances. The analogy between (4.6) and 
( 13. 1) is im.mediate; heat flow being the analogue of force ( or heat 
energy the analogue of momentum) and temperature the analogue of 
velocity. The dimensions of X are ML T-~ e-i. The differential 
form of ( 13. 1) for thermally isotropie media is ( 31

) 

(13.2) qt==-x0,t, 

We are not concerned here with the exactitude of Fourier's law 

(3°) [1822, 1, § 65]. 
(3 1 ) f1822, 1, § 138]. 
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( 13. 2); suffice that a crude experiment indicates it to be a rough 
approximation, (or our only purpose at the moment is to indicate 
that in general the heat flux q1 should depend upon the temperature 
gradient O,i and a quantity x of dimensions ML T-3 9-1

• The thermal 
conductivity z. is observed to be a fonction of temperature, and more 
generally we may suppose that in a fluid it depends upon the thermo-
dynamic slate. • 

14. PosTULATE FOR THE HEAT FLUX VECTOR. - The foregoing remarks 
suggest lhat our definition of the Stokesian fluid of paragraphe 5 
should be amplified by the following three further postulates : 

IV. There exists a material constant z.n, called the natural conduc-
tivit y, whose dimensions are 
( 1fi. I ) di m Zn== • 

V. The heat flux qi is of the f unctional form 

(ilt..2) qi==J(zn, Oo,Pm,P, 0, .0,J), 

and is ana(ytz'c an f unction of 0 ,j 

VI. If 0,j== o then qi== o. 
The natural conductivity Xn is a conslant, not a fonction of tempe-

rature, and thus is not to be identified with the ordinary conductivity x. 
Indeed, it will appear [ cf. ( i6. 3 )l that Xn is the dimensional part of x, 
just as !-Ln is the dimensional par of p.. 

ta. THERMALLY ISOTROPIC FLUiDS. - From ( 14. 2) and the assumed 
analyticity of qi ,ve have 
(Hi. 1) q(== ki+ k/0,J+ kJk0,j0,k+ ... ' 

where ki, ki_r, ... , are certain tensors independent of 0,i· By VI of 
paragraphe 14, ki== o. A fluid is thermally isotropie if the coefficients 
in the expansion ( 15. 1) reduce Lo numerical tensors. N ow the only 
numerical tensors at our disposai are multiples and ptoducts of 'fih 
'èi/z, ... , and siJk. Hence ( 15. 1) reduces to 

(15.2) 
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where the fonction <J is of the form 

(15.3) == j( Io, Xn, Oo, Pm, p, 0 ), 

-16. T1rn FORM OF THE COEFFICIENT~- - Now the quantity 'i is dimen-
xn 

sionless, and hence the relation 

( 16. I) 
s,. == /( Io, X,o Oo, Pm, p, 0) 
Xn 

connects six quantities composed of four independent dimensions, 
and so must reduce to .a relation connecting 6 - 4 == 2 dimensionless 

ratios of these quantities. For the desired ratios we may select L, -0°. Pm o 
Thus ( 15. 2) becomes simply 
( 16. 2) f/i == - xO J, 

where 

(16.3) 

the Stokesian fluid obeys Fourz"er's law of heat conducûon. 

f ·7. PROVISIONAL CONCLUSIONS. - lt may at first sight seem some,vhat 
surprising that in the theory of the Stokesian fluid while the classical 
Newton-Cauchy-Poisson law for the stress turns out to be only a 
first approximation, nevertheless Fourier's law for the heat flux 
remains unchanged. The underlying reason for the difference 
is the separation of stress and heat flux as associated each separately 
with only one macroscopic phenomena-velocity gradients give rise to 
stresses and thermal gradients give rise to heat flow. This distinction, 
which we have embodied in our defining equations ( 5. 3) and ( 14. 2 ), 

from a physical point of vie:w is an artifical one, which in reality should 
appear only as a first approximation to a broader concept of fluidity. 
The formulation and development of this broader concept is the 
subject of the succeeding Memoir. 
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APPENDIX. 

PHOPERTIES OF CONTINUOUS MEDIA IN GENERAL. 

\,Ve summarize here these properties of continuous media with 
which the reader of the foregoing memoir has been presumed to be 
familiar. If ds'}. be the squared element of arc length and the 
symbol of material differentiation, we have 

(A. 1) 

where the rate of de formation tensor dij is given by 

(A. 2) 

xt being the velocity vector. Thus the components dij are measures 
of the local and instantaneous rates at which the medium is suffering 
deformation. Their physical components are of dimension T-1 , 

where T is a unit of time. Similarly the components W;j given by 

(A.3) 

are measures of the rate of rotaûon ( vorticity ). The principle. of 
conserration of mass ( or continuity of motion) is expressed by Euler's 
equation 
(A.4) 

where pis the densùy, whose dimensions are ML-a, M being a unit 
of mass and, L a unit of length. The principle of conserçation ·of 
momentum is expressed by Cauchy's equalions 

(A.5) 

where tij is the stress tensor and f is the extraneous force vector. The 
dimensions of the physical components of tij are M L- 1 T-2 • The 
mean pressure Pm is given by the definition 

(A.6) 
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Let E be the interna! energy ( per unit mass). Then the principle 
- of consen·ation of energy implies that the rate of change of the 

total energy ( internal plus kinelic) of any material volume must 
equal the sum of the rate at which the· extraneous force does work 
upon it, the rate at which the stresses upon its boundary do work, 
and the rate at which thermal energy flows into it from the exterior, 
in terms of the heat flux vcctor (/. The resulting equation may be 
simplified by (A. 5 ), yielding finally the Fourier-Kirchhoff-
C. Neumann equation 
(A.7) pi== tïir!ii- (/,i• 

Thus tij dii, the stress power, is the rate at which the stress does 
work, per unit volume. N 9te that the stress power vanishes in any 
rigid motion ( dij=== o ). The equation (A.?) may be taken as a defi-
nilion of the internal energy il we please, for from it the value of E for 
each particle may be calculated up to an arbitrary constant, if the 
other variables be known. The dimensions of E are L 2 T- 2

; those 
of qi are MT-3 • Usually it is assumed further that each particle of 
the continuum constitutes a thermodynamic system; that is, regardless 
of the state of motion each particle has an equatz"on of state 

(A.8) ê == ê ( ') ; "fj ) ) 

where s is the interna! energy ( par unit mass), ,; is the specijic volume 

( v == ~), and YJ is the e'ntropy ( par unit mass). The form of (A. 8) 
\ p 

may vary from one particle to another, but it is to remain constant 
in time; that is, for the present simple analysis the medium may be 
heterogeneous, but if changes of phase, chemical reactions, etc., are 
to be included, f~rther elaborations are required. Then if the 
pressure TC and temperatur.e 0 be defined by 

(A.g) 

we have 
(A. 10) 

The dimensions of TC so defined are ML-1 T-2
, the same as the 

dimensions of tij and of Pm• vVhile we are here considering the 
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entropy as a prim1L1ve variable, in accord with common physical 
practice we shall take a unit of temperature 8 as the fondamental 
thermal dimension; then the dimensions of ,i are L 2 T- 2 9-1

• Let an 
extra stress (ij be defined by 
(A.11) vïi=pàïi+tïi 

where p is an arbitrary scalar. Cauchy's laws (A. 5) now become 

(A. 12) 

Combination of (A. 7 ), (A. IO ), and (A. 11) yields 

(A.d) 

where <P is given by 
(A.1'd 

We have 
(A. 15) 

pO-~ == (r. - p) logy + <I> - {/,ï 

While it is tempting to regard this equation as a decomposition of 
the stress power into a portion associated ·with change of shape plus 
a portion associated with change of volume, since p remains up to 
this point an arbitrary scalar, no specific interpretation can yet be 
j ustified. Here we observe a fondamental distinction. For an 
in compressible medium (A. 13) reduces simply to 

(A. 16) 

Thus, for an incompressible substance, whate()er the choz"ce of the 
scalar p zn the decompositz"on (A. 11 ), <I> is the rate at H-·hich mechanical 
worlc is being transformed into thetmal energy ( per unit volume). 
For a compressible substance, however, in order to obtain the simple 
equation (A. 15) and the consequent unique interpretation of <I>, it is 
necessary and sufficient to add the definition 

p == rr, 

which reduces the number of unknowns by one. The total number 
of unknowns, however, is the same for compressible and for incom-

Journ. de Math., tome XXIX. - Fasc. 3, 1950. 3 I 
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pressible media, since for the latter pis a given fonction or constant, 
while for lhe former it is an unknown. With this distinction, then, 
the same formal structure may be employed for describing the ther-
modynamics of both compressible and incompressible media, al1hough 
the meanings of some of the variables are not qui le the same in the 
two cases. When (A.1 1) is adopted for compressible media, the 
decomposition (A. 11) acquires primary physical significance, for it 
resolves the stress into two portions, the first, - p 't/h being that 
whose work ( if any) is always mechanically recoverable, and the 
second, f'ih being that whose work ( :i 2) in deforming the medium is 
irretrievable lost as heat, which may be stored in terms of entropy or 
conducted away. The decomposition (A. 15) similarly resolves the 
stress power into dissipated and recoverable portions; part of the 
work clone in producing a change of volume is generally recoverable, 
white partis not. It cannot be too strongly emphasized that : ( 1) no 
resolu tion of the stress other than that consequent upon (A. 17) can 
yield the simple energy equation (A. 16) for compressible media; 
( 2) both i: and Pm are defined variables whose equalions of defini-
tion (A. 6) and (A. g) show them Lo represent quite different physical 
concepts, and there is no reason whatever a priori ro suppose them 
equal or even related to each other, and ( 3) the power loss <P is a 
defined quantity which exists in all continua, requiring no special 
hypotheses ( 33 

). 

Finally, the irreversibility of many processes is expressed by the 
Clausius-Duhem inequality 

(A. 18) 1 /~ i dS-
·v p;,dV +:J; y~o, 

where Vis an arbitrary volume and~ ils bouding surface. 

cl!) It ,vould not be correct to conclude that from vil~ 0 it necessarily 
follo,vs that dissipation takes place, for it is possible that vii does no work, i. e. 
vii dii=::. o. 

( 3:i) <I> is not to be confused with Rayleigh ,s dissipation fonction, which for 
continuous media could better be called a '' stress potential ,, , and exists onJy 
in very special circumstances. 
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