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A new definition of a fluid.
1. The Stokesian Fluid;

By C. TRUESDELL,

Applied Mathematics Branch, Mechanics Division,
Naval Rescarch Laboratory, Washington, D. C.

Dedicated to the Memory of P. Dungs.
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AppenpiX. — Properties of continuous media in general.

L. PrecniNary piscourse. — For the description of aerodynamic
phenomena at high altitudes the classical Navier-Stokes equations are
no longer sufficient. It is generally believed, however, that up to an
altitude of 100*" the air may be regarded as a continuous medium, so
that what is required is a formula for the stress tensor more general
than that forming the basis of the classical theory of viscous compres-
sible fluids but reducing to it when the pressure is not too low.
Such an expression has been sought in the kinetic theory of gases ().
But for gross phenomena in a continuous medium a gross assumption
is preferable. History teaches us that the conjectures of natural
philosophers, though often positively proclaimed as ¢ physical laws ”,
are subject to unforeseenrevisions. Molecular hypotheses have come
and gone, but the phenomenological equations of d’Alembert, Euler
and Cauchy remain exact as at the day of their discovery, exempt
from fashion. In adopting a phenomenological and at the same time
rigorously mathematical approach to the general theory of fluids
I follow the path opened fifty years ago by the profound researches
of Duhem.

2. PuenomENoLoGicaL METHODS. — To search out the true foundation
of the theory of fluids, it is not to experiments of the laboratory but
rather to ordinary experience, whence comes our intuitive concept of

Much of the material in Part 1, of which [1949, 7] 1s a preliminary version,
I presented in lectures at the University of Illinois, december 16, 1948; at the
University of Toronto, february 4, 1949; and at the Institut de Mécanique de la
Faculté des Sciences de Paris, june g, 1949. Part II, of which [1948, 1] is a
preliminary version, is partially summarized in [1948, 2], and was presented to
the Americal Physical Society, january 30, 1948, New-York City; paragraphe 11
was presented to that Society, january 28, 1949, New-York City.
(®) See § 18 of the succeeding Memoir.
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fluidity, that our first questions should be directed. For the mathe-
malical realizalion of an elementary concept we are in no way more
able than our forebears, those giants upon whose shoulders we stand
like dwarfs who would leap over mountains. On the contrary, we
have somewhat dissipated the wealth which they bequeathed us.
But today we have a full knowledge of the rules of invariance, which
permit us to attain in the mathematical formule the generality,
simplicity, and elegance of the intuitive concepts we design them
to represent, and from formal simplicity comes what is called
““ understanding .

The basic method of this paper, which may be recommended for
establishing an phenomenological theory upon a sound foundation,
consists of two parts. First, simple and immediate experience is
summarized in a formal definitionof anideal medium, which is neither
more nor less than a postulate of the existence of certain dimensional
quantities and a specification of the functional dependence of some of
the quantities upon others. It need hardly be mentioned that in such
a definition no special Lype of function, such as a linear or quadratic
form, is singled out for preference. Second, the forms of the defining
functions are rendered definite by a full use of the principles of inva-
riance, both dimensional and tensorial. From expansions of these
functions in power series, any number of terms of which may be
retained at will, complete dynamical equations of any order of
approximation are an immediate consequence.

3. Heuristic pISCUSSION OF FLUIDITY. STOKES’S PRINCIPLE. — What then
is a fluid? The most evident mechanical property of an isolated
volume of water is that its shape depends largely upon the form of
the containing vessel, exhibiting no tendency whatever to re-assume
any previous form it may have had; such a body is thus possessed of
no finite ¢ Memory ”‘. It would be quite wrong, however, to
conclude that a fluid offers no resistance to deformation. Indeed, if
we drag our hand rapidly through a body of water, even at constant
speed, we experience marked resistance, while the same amount of
deformation is easily effected more slowly. Even though offering no
resistance to a permanent deformation, once effected, water does

Journ. de Math., tome XXIX. — Fasc. 3, 1g950. 28
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indeed resist a change of volume, and no ordinary pressure can
produce a sensible compression. If we altempt to compress a mass
of air, however, we find that a slight pressure produces a considerable
change of volume, but that when this pressure is removed the air
quickly regains its original volume, provided the surroundings be
otherwise kept constant. Euler (*) in effect defined a fluid as a body
possibly endowed with elasticity of volume, but without elasticity of
shape, and it was perhaps in this sense that Cauchy (*)in first giving
the complete expressions for the stresses in a viscous compressible
fluid spoke of ¢“ corps solides entiérement dépourvus d’élasticité .
The elasticity of shape of a compressible fluid is attendant upon the
thermodynamic static pressure = ==(g, 0), where ; is the density
and 6 is the temperature. In an incompressible fluid there is no such
functional dependance for the static pressure (°). In all types of
fluids the remaining portion ¢; of the total stress ¢,

(3.1) vy=j— (— pdy) =1+ pdy,
is that which arises in resistance to instantaneous change of shape,

and thus evidently depends upon it. This concept of fluidity is
embodied in Stokes’s principle (*) : ¢ That the difference between the

(*) Euler {1769, 1, § 1, 13, 24] defined a fluid in terms of three phenomena :
1. ¢ Si fluidum a vi quacunque pressum in ®quilibrio versetur, tum pressio per
totam fluidi massam ita @qualiter diffunditur, ut omnes ejus particule parem
vim sustineant. ' 2. ‘“ Alia fluida ita comparata deprehenduntur, ut quan-
tumvis magna vi premantur, idem semper volumen retineant : alia vero hujus
sunt indolis, ut quo majori vi premantur, in eo minus spatium redigantur,
antequam ad eqnilibrium perveniant : in utroque autem genere proprietas
{luiditatis ante memorata @que locum habet. 7 3. ‘“ Omnis generis fluida a
calore in majus spatium expandi, a frigore autem in minus spatium contrahi
experientia declarat, quatenus quidem ob vires sollicitantes hoc fieri licet.
His discussion [§ 2-12] of 1 reveals that he regarded a fluid as a body without
elasticity of shape. An earlier formulation may be found in [1757, 1, § VI-XIX].

(*) [1823, 17, (1828, 1, § IIT]. See, § 18, however.

(%) For a discussion of the various pressures, and a hasty exposition of these
properties of continuous media in general which are employed in the present
paper, see the Appendix below.

(°) |1845, 1, § 1]. For the history of the fundamental equations of the
classical theory, see § 18 of the succeeding Memoir.
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pressure on a plane in a given direction passing through any point P
of a fluid in motion and the pressure which would exist in all
directions about P if the fluid in its neighborhood were in a state of
relative equilibrium depends only on the relative motion of the fluid
immediately about P; and that the relative motion due to any motion
of rotation may be eliminated without affecting the differences of the
pressures above mentioned. ”’” Now the measure of the rate of defor-
mation of a medium was show by Euler (*) to be the tensor

. | SO .
(3.2) dy = E(xl,,-—i— zjh),

where 2 is the velocity vector (*). - Since the tensor
. I . .
(3.3) wy= (2, —x;)

was shown by Cauchy (°) and Stokes (*°) to be a measure of the
local and instantaneous rate of rotation (vorticity) of the medium,
d;=a' ;— w'; is indeed the measure of ‘‘ relative motion " after the
rotalion has been eliminated. Thus in modern terms Stokes’s prin-
ciple in its full generality ('*) is simply

(3.4) ) vi=f(d%),  flo)=o.

These equations were used as the defining property of fluids by
Reiner (*?) and Rivlin (**). Since in general the rate at which the
stress dees work (per unit volume) is #;d/;, from (3.4,) we have the
scalar equation

(3.5) t; dig= g ().

(") fx770. 1, £ 9-12]. Equivalent analyses were given by Cauchy [1827, 1,
p. 88-93] (for infinitesimal strain) and Stokes [1845, 1, § 2]. _

(*) We employ the ordinary notations of the absolute dilferential calculus,
as presented e. g. in [1927, 1].

(*) [1841, 1, th. IV].

(1°) [1845,1,§2].

(1) After stating his principle, Stokes himself [1845, 1, § 3] by an argument
referring to the ultimate molecules concluded that the functions (3.4) should
be linear.

(**) (1945, 1, § 2].

(**) [r947, 2], [1948, &, § 9].
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Thus an equivalent formulation of Stokes’s principle is : the stress
power is a function of the rate of deformation only.

A. HEeurisTic piscussioN of viscosity. — The phenomenon embodied
by (3.4) is called wviscosity, and the stresses ¢; are called viscous
stresses.  In dimensional form (3.4,) becomes

(b.1) %:f(%),

a relation manifestly impossible without the insertion of a further
dimensional quanlity, say, P. That is, in place of (3.4,) we must
have ' :

(b.2) vh= f(d%, P),
or, dimensionally,
(5.3) f<%,%,diml)>:o,

where dim P is such that a dimensionless ratio

M \*.;
— g
<LT2) T
dimP "’
can be formed. Consequently

(b.4) dimP = M>*L—> T8~

Choice of one of the exponents is equivalent to raising P to an arbi-
trary power, and hence one exponent may be given any convenient

value. Taking o =1, we have
(k.5) d;mpzﬁ"i}?ﬁ.
The number 3 remains arbitrary. The phenomenon of resistance,
Lherefore, requires a nearer analysis.
According to the celebrated hypothesis of Newton ('*), as refor-

mulaled by Maxwell (**), when a viscous fluid is confined between

(**) [1726, 1, Lib. 11, sect. IX].
(**) [1866, 1, p. 7-8], [x871, 1, p. 277-278].
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infinite parallel plane boundaries which are in constant relalive notion
at a velocity @, the walls experience a retarding force according to
the formula ’ '

force @€

(5.6) area i“distauce between walls’

where 1. is a quantity called the coefficient of viscosity, which is inde-
pendent, of the other magnitudes in the formula, but dependent upon
the particular fluid. The dimensions of p. are ML~ T, corres-
ponding to the choice =2 in (4.5). We are not concerned here
with the exactness of (4.6); suffice that a crude actual experiment
indicates it to be a rough approximation, for our only purpose at the
moment is to indicate that a quantily p.of dimensions ML ~'T—* should
enter the definition of a fluid.

Now this viscosity 1 is a manifest function of the temperature 0,
and more generally may be supposed to be a function of the thermo-
dynamic state

(h.7) p=/(p, 9).

But this relation connects three quantities composed of the three
independent dimensions ML™*T~', T, and&, and hence cannot
subsist unless some of the variables be struck oul or clse other quan-
tities composed of the same dimensions be inserted. The only
alternative to ;. = const. is then tointroduce new quantities. At first
sight it would seem reasonable to propose

E=s(ed)

o 0

where y,, p,, and §, are certain reference values of 11, p and 6, charac-
teristic of the particular fluid. Now dim p,=ML'T 7, so that p,
is an elasticity. But if there be both a viscosity p., and an elasticity p,

representing properties of the fluid, then the quantity j‘? must also
0

represenl a property of the fluid. Now;ﬂ is of the dimension T : any

substance sith a natural viscosity and natural elasticity possesses also a
natural time, and must necessarily be susceptible of time dependent
phenomena, sueh as relaxation effects. These effects are expressly
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excluded by our initial statement that it is contrary to experience for
a fluid (as we simply conceive it) lo exhibit any response to a confi-
guration assumed a finite time in the past(**). Hence we may either
adopt the usual expedient of excluding p altogether from (4.7), as is
done implicitly at the outset in the ordinary kinetic theory of gases,
or embracing a more liberal view we may seek another scalar quan-
tity of the dimensions of p, but not a constant of the fluid. Such a

t;

quantity is readily found in the mean pressure p,,=— ' In place
of (4.8) we have then

_ r 0
(k.9) P"—Fof(;ﬂ,(ro)-

Recall that from the basic definitions usually employed in the kinetic
theory of gases follows at the outset the confluence of these two
pressures. It is not surprising that one of the results of that theory
is thal p. 1s independent of the pressure.

All the remarks of this and the preceding section are heuristic,
serving only to motivate the formal definition of a fluid which
follows now.

3. DEFINITION OF THE STOKESIAN FLUID. — A Stokesian fluid is a conii-
nuous medium such that :

L. There exist material constants u, and 9, called respectively the
natural viscosity and the reference temperature, whose dimensions are

. M
5. d n= —
(5.1) 1m . [T’
(5.2) dim0, = 6.

IL. The stress power is of the functional form
(53) li/- dii:f([l.n, 00, Pmy P 6, (Z];/),
and ts an analytic function of the components dy,.

1. If dy=o then
(5.4) ty=—pd,

(*) As Cauchy [1828, 1, § 1II] expressed it, ‘* I'élasticité disparait entié-

-

rement 7.
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where fo;' incompressible fluids p is an unspecified scalar, while for
compressible fluids p is the thermodynamic pressure p=p(p, 8).

Note that p, is a conslant, not a function of the thermodynamic
state, and thus must not be confused with the ordinary coefficient of
viscosity ;1. Rather, it is to be regarded as the dimensional part of y,

. 0
and we shall see later [¢f. equat. (7.8)]thatin fact p. = ‘unf<£13 6—0>’

where the function /1s dimensionless.

6. Isotropic FLUIS. — Since d;; is symmetric, from (5.3), and the
assumed analyticity of #/; we have

(6.1) 1= ki;+ /(ijk[ (/,k—|—_ /it/k["‘,z Al 4. ..,
where &/;, I/, ... are cerlain tensors independant of d';. By (5.4),
k;=—pci;. A fluid will be said to be zsotropic if the matrix t of #;

be a function of the matrix d of &', :
(6.2) t——pl+/ld+hdit by APtk di ...,

where the £; are scalars independent of d. From this definition it
follows that in an isotropic fluid there are no preferred directions of
response :

t', must depend upon d*, in exactly the same way thal ¢*, depends
upon d*,, ..., in every co-ordinate system, and the principal axes of
t coincide with thoseof d. Reiner (") has given an elegant reduction
of the series (6.2) to a simpler form by observing that the Cayley-
Hamilton equation yields

(6.3) dP=1qd2— Ilgd + 11141,

where I4, Iy, IIl4 are the principal invariants of d, so that the third
and all higher powers of d may be eliminaled from (6.2). Thus

(6.4) t=5,I+5,d+ 7,47
where F,, ,, and &, are functions of the principal invariants. In

component form,
(65) ll',»zfioaij-}—.‘f-i di,'—i— ggdikdkj.

(*7) [1945, 1, § b].
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The definition of paragraph 5 neither mentions nor requires
isotropy, but in the present paper we shall confine our attention to -
this special case in the interest of simplicity. In the succeeding
paper, our method is applied more generally.

7.-THE FORM OF THE COEFFICIENTS F,, F,, F,. — From (5.3) we have
now
(7~ I) Foy Ty, jzzf(flny UO,- Pm P> 0: Idv IIdy l“d)~
But the quantities %’, P1, 222 are dimensionless. It follows that the
relations
(T.2) To Tl oty G0y o 5 0, Ta, T, 1),

P Hn Hn
wich connect eight quantities composed of the three fundamental
dimensions LMT’ T, and &, must reduce to relations connecting

8 — 3 =75 dimensionless ratios of these quantities. The desired
ratios rise beneath our hands :

B B 0
(7.3) SRl PR ) | PR ) PR R
P P P P Do

If then we introduce the dimensionless coefficients Fy :

(1.4) =" r="4 r=22,
P [ @l
we have
7.5 . y — By B M i
(1.5) F., i, F._,_f<P la, 5 1a, O T, - 60>’

where the functions Fy require only dimensionless constants for their
full expression. Putting (7.4) into (6.5 ), we thus reduce the theory
of the Stokesian fiuid to the definite form

(7.6) 1= pFy 0+ pn Fy dij+ ‘;;F diy dk;,

9
where F, <o, 0, 0, %l, 6_0> =—1.
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So as to fix our ideas upon this result let us write out explicitly
the terms of first and second order (**) in the viscosity , :

(T.7)  ly=— p &+ pa[Alady+ B ]

+ (; [ CI4 8+ Dlg dij+ Ellg 6+ U dig db; )+ . ..

. . ) ) 0
where A, B, ..., I are dimensionless functions of o and £ only.
0

m

For conformity with the classical notations, we may define the linear
coefficients of viscosity A and . :
(7.8) A= R A, 2 = . B.

The terms of degree o and 1 in p.,, in the series (7.1) now become
the Newton-Cauchy-Poisson law, which forms the basis of the
classical theory of viscous fluids. C, D, E and F are the four dimen-
sionless coefficients of viscosily of second order.

At the commencement of this Memoir I spoke of the need for an
expression for the stresses in a fluid medium at low pressures, but
since then I have not mentioned the matter again. Instead, I have
only given a precise form to our ordinary concept of fluidity, and
here is the result : an expansion in reciprocal powers of the pressure,
to which we have been driven simply by the irrefutable force of the
principles of invariance. The linear terms are exactly those of the
classical theory. The terms of higher order can become significant
only at sufficiently low pressures.

More generally, let us write the power series for the dimensionless
coefficients Fy in the form (**)

o . HLL J &’-’1 g/{_i;)l XK
(1.9) Py __1/41Jgt;c<1) 1d> <1f=’ud> (B )",
— F1‘Jjac< b VT g,

(*8)These second order terms, but with coefficients unspecified in form, are
included in a more general result [equat (18.3) of the succeeding memoir |
given by Boussinesq (1868, 1, Note I]. Five of the six terms of third order,
again with coefficients unspecified in form, are derived by Girault [1931, 1,
Chap. II1], whose work is discussed in § 12, (?7).

(**) In this paper a diagonally repeated index, whether tensorial or not, is
always taken as summed over its full range of variability. Thus e. g.in (7.9)
all three indices J, F, K are summed from o to o.

Journ. de Math., tome XXIX.— Fasc. 3, 1g50. 29
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where the dimensionlesss coefficients of viscosity Fyyqx are functions

of £ and (;)0 only

S m

. nl / m 0
(7.10) Pl‘Jj;‘}C:f(%’O;)'

The coefficients of (7.7) are related to those of this full expansion as
follows

FOOO():_' 1, ) == [Jvzs A - Hn Foiooy 21U> = ‘U-ny B — le Fwoo;
C = Fis00, D = Fi, E = Fo0, F = F,g0.

If Fy 00 2 0 the fluid is viscous, as we shall henceforth assume.

8. DyvamicaL smiarity. — By the ordinary rigorous method of
affine transformations it is easy to deduce criteria for dynamical
similarity for the Stokesian fluid. In addition to the Mach number,
the Reynolds number, and the other dimensionless characteristic
numbers of the classical theory, we obtain also the number 3:

8. J = -—)
(8.1) >

where d is a rate of deformations, frequency, expansion, vorticity, or
reciprocal of a time wich 1s characteristic for the class of motions
being compared. Now in the classical linear theory no such quantity
as d occurs in the complete set of parameters for local dynamic
similarity (although for certain classes of motions such a quantity
may occur in paramelers governing similarity at boundaries). Ina
general Stokesian fluid however, a time, frequency, expansion, or
vorticity must always be taken into account in considerations of
similarity, and furthermore this quantity is the only new dimensional
parameter which need be employed no matter how many higher
order terms in (7.7) are retained, for the only new characteristic
numbers besides .3 to which these give rise are ratios of the several
dimensionless coefficients, viz.

Fragac.

Fiooo

(8.2)

Thus tbe classical linear theory altogether neglects one eﬂ"'ect_ of
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primary physical significance : although it is to represent dynamical
phenomena in fluids, all the variables which occur in the consequent
numbers governing dynamic similarity are statical quantities (in the
usual Eulerian description), so that it would seem that time rates are
of secondary importance in the structure even though they alone are
considered in its basic dynamical laws. This sirange quality results
only from omitting the higher order terms in (7.7), and thus is not
proper to the Stokesian concept, but a mere accident of the classical
linearization. From a physical point of wiew we may say that in
the general theory here presented time rates play the dominant part
we should expect from the concept of fluidity, and that moreover
this part is essentially the same no matter how many terms in the
series for the stresses are retained, so long as they go past the linear
terms.

To grasp the significance of this new effect, consider a case in
which the higher order terms in (7.7) are not negligible, but yet act
only as small perturbations. Then if motions of two different
Stokesian fluids be compared, it is not unreasonable to suppose that
the effect of different values of the higher order coefficients A, B, ...
for the two fluids may be neglected, so that J becomes the only
characteristic number which need be added to govern the effects of
the perturbing terms. Suppose now we have two identical vessels
conlaining specimens of the same fluid, which we place in a vacuum
at the same altitude above sea level. Let cocks be opened so as to
permit the fluids to escape, and at suitable corresponding points in
each issuing jet let measurements be taken. Suppose the velocity,
density, and temperature at these corresponding points be found
identical in each. Then all the criteria for dynamical similarity in
the classical theory are satisfied, and while in the absence of a uni-
queness theorem we cannot actually prove, yet we may with some
confidence expect, that the two flows will be altogether identical.
In the case of the Stokesian fluid in order to gain the same expectation
we must first verify that, say, the corresponding vorticities are equal,
or that the total times of efflux are equal, etc. In other words, two
samples of a Stokesian fluid issuing from identical vessels under
identical statical conditions at a typical point may require quite
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different times of efflux.  This greater freedom arises mathematically
from the fact that the dynamical équations for the Stokesian fluid are
of higher order than the Navier-Stokes equations, and it is possible
for the two motions to be started in different manners.

Now in general in order te consider dynamical similarity one must
know the following properties of the fluid

(83) s 00? F]’Jf[:'{y

and the following properties of the particular flow at certain corres-
ponding points
(8.4) poo 4 & d

Note that there are but five of these latter, no matter how high an order
of approximation for the stresses be selected, and that in the classical
linear theory one of these (d) may be neglected; while the higher the
order of approximation in thestress formulae, the greater the number
of properties of the fluid which must be ascertained.

If we may suppose that all the dimensionless coefficients Fys55 are
of the order of 1 or less in absolute value, then a criterion for the
validily of the ordinary linear theory is simply

d

8.5 ' 3 — <1,
(8.5) 7

i

Thatis Lo say, the higher order terms are appropriale to a combination
of high viscosity, high rate of deformation, or low pressure. The
first two effects are in some measure contradictory, though in any
case we may notice that since the rate of deformation often becomes
infinite at a singularity, the results of the classical theory cannot be
regarded as meaningful in its vicinity; but to find the third, one need
only ascend the atmosphere. A numerical example is instructive.
For water al 1"™, in order for J to reach the order of 1 the rate
of deformation d must be of the order of 7.10° sec™*; our higher
order terms, then, can be significant only for very high frequency
oscillations. But on the contrary, in the upper atmosphere there are
very low pressures, which can render our higher order terms of
predominant importance even for ordinary rates of deformation.
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9. MEAN PRESSURE AND THERMODYNAMIC PRESSURE. — Most treatments of
fluid dynamics employ the assumption p=p,, although itis supported
neither by sound theory nor by experiment and effects but slight
simplification of the resulting equations. By (7.8), an immediate
consequence is that all the coefficients of viscosily Fysyx become
independent of pressure. Il is somelimes claimed that in the kinetic
theory of gases it is proved that p is independent of p. Since the
basic definitions of that theory (*°) as usually employed imply p==p’,
at the outsel, the result is not surprising.

In the general case, by*(7.6) and (7.9) we have

(9.1) 3 pm=3pFo+ plaFy+ A';f?,(lg — o1lq) F),
or

‘3(/}—]),,1):(3)\4—2”)1(1—&— ‘?[(3C+D—|—F)I§+(3E—2F)HdJ s

(92) <
3 —_
_(_Pp_pm) =[BFuyx—+ Fi o 9,x+Fs 0 3 x—2F, 5 5. x]

J

(B ) rgmgng,
where the term containing F,,o, in the sum on the right is 1o be
omitted. In the classical linear theory we have p > p, in an expan-
ding motion and p =_p,, in a conlracting motion, but (9.2) shows that
if the number 3, as given by (8.1), be sufficiently large, the sign
of p — p,, may be that of 3C+ D -+ F, irrespective of whether the
motion be expanding or contracting.
A necessary and sufficient condition that p=p/, in all motions is

(9.3) 3Fosgx + Fy oy 3 6+ Fo o 90— 2F, 59, x =o.

The first few cases sspecial are
30 + a2p =o,
(9.4) 3¢ +D -+ F=o,
3E— 2F =o,

of which the first 1s the classical Stokes relation. Now in the
classical theory the Stokes relation in also a necessary and sufficient

(2*) Cf. § 20 of the succeeding Memoir.
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condition that a motion of uniform dilatation d';=d ¢/; can take place
without dissipation of energy. In the general theory it is easy to
work out a condition for this most improbable phenomenon, similar
in form but not identical with (9.3).

10. Coxtrast with ELasTicITY. — From the formal analogy between
Cauchy’s generalization of Hooke’s law and the classical linear terms
of (7.7) hasty persons sometimes erroneously conclude that a proper
generalization of the equations of elasticity simultaneously yields a
proper generalization of the Navier-Stoke$ équations. Since fluids
and elastic solids, being the very extremes of possible types of
deformable continua, embody entirely different mechanical concepts,
such an analogy would be surprising; that it exists in the classical
theories is in fact an accident attendant upon linearization. Compa-
rison of (7.7) and the corresponding expansion for the stress in the.
general theory of elasticity (*') shows their entirely different form
and characler as soon as the first terms of higher order are considered,
a difference reflecting the fact that strain is dimensionless (**) while
rale of deformation is of dimension T~'. In the classical linear
theories, the elastic stress is the gradient of the elastic energy with
respect to the strain, while the viscous stress is the gradient of
Rayleigh’s dissipation function with respect to the rate of deforma-
tion. Neither property carries over in a rational generalization. In
the theory of elasticity the Eulerian stress ¢; remains expressible in
terms of derivatives of the elastic energy with respect to the strain,

(') E. g.[1937, 1, p. 251].

(22) Thus the criterion for the validity of the classical linear stress-strain
relations in elasticity is simply that the strain be small, in contrast to the more
complicated criterion (8.5) for the validity of the classical linear expressions
for the stress as a function of the rate of deformation in fluid dynamics. Several
authors [ 1874, 1, p. 109 ], [1888, 1, § 466 ], [1931, 1, Chap. 1], [1933, 1, p. 359],
[1945, 1, p. 335] in pursuing a false analogy between elasticity and fluid
dynamics have spoken of < small velocities 7, ¢ small relative velocities ", and
', etc. in the present connection. Since none of these
quantities is dimensionless, the statements are meaningless, except perhaps as

¢« small rates of strain’

loose references to a limit process.
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but no longer as a simple gradient. In the present theory of fluids
the viscous siresses are no longer derivable from any scalar by diffe-
rentiation, and no Rayleigh function exists. To prove this last
statement we need only observe that a scalar function of d alone can
contain (in the isotropic case) at most three terms of third order in
the components d;;, since 13, I41l4, and III; form a complete set of
third order invariants of d. An expression derived from a Rayleigh
function by differentiation can then contain at most three third order
coefficients of viscosily, while in (7.7) there are four. As more
terms, are considered, the discrepancy in number increases, and the
difference in form becomes more striking, a difference to be expected
because of the different physical situations considered. The non-
linear theories are thus of greater conceptual clarity than the classical
linear theories, whose simplicity is misleading.

11. Tue reser-rivLIN FLUID. — Reiner (*?) bases his general theory
of fluids upon Stokes’s principle, and hence for an isotropic fluid
obtains an expression of type (6.5) for the viscous stresses

11.1 —=—pd;+ F,0, + F,d; + F, diy di;,
J POy J 7

where ¥, F,, F,= f(lg, Il4, lllg). Rivlin (**) gives a similar
analysis for incompressible fluids, and hence obtains

(11.2) li/:——pai/—i—glclij—l—ff'gd“/‘-dki,

where 7,, F,= f(ll4, lll3); here the term &, ¢; has been incorpo-
rated into the arbitrary pressure —pd’;. According to Reiner, the
coefficients ‘“ while generally be functions of the hydrostatic pressure
or of the density of the material, ” while according to Rivlin the
coefficients in the power series expansions of the &y are ‘¢ constants

characterizing the fluid considered. ” Both authors imply also that
these coefficients depend upon the temperature.
Now
\‘F"
(11.3) dim 22 =T.
I

(
(

3
24

) {1945, 1].
) [1947, 2], [1948, & ].
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Hence if the leading coefficients %,(o, 0, 0) and F,(0, 0, 0) in the
powerseries for &, and &, be material constants, (11.3) demonstrates
the existence of a natural time t, in the Reiner-Rivlin theory. Similar
reasoning does not apply to the Stokesian fluid, since the coefficients
Fyyyx in the series for the Fy are generally not material constants.
Neither Reiner nor Rivlin comments upon the dimensions of any of
the terms, but [ believe it a fair interpretation of the quotations above
to conclude that both imply the existence of material constants having

the same dimensions as the coefficients Fys5x 10 the power series for.

the Fy. For a fluid with a natural time ¢,, the ratio ‘L:—" 1s also amaterial

n

constant, and since dim %‘ = ML~*T=*, we may say that the Reiner-

Rivlin theory concerns fluids having a natural elasticity (cf. § 4).

To give a complete formal definition of the Reiner-Rivlin fluid, we
simply make two additions in the definition of the Stokesian fluid in
paragraph 5 : First, add a third material constant t, such that

(11.4) dimt,= T;
second, in place of (5.3) suppose
(115) li/' d/i:f(‘um Ly, 007 Pns P 6; dk!)-

Then for the coefficients F,, F,, &, of an isotropic fluid in place of
(7.1) we obtain

(116) Fo Ty, Ty :f([Jvu tn, 00»[77117 P 0, Ia, Ild7 llld))-

The relations of the type (7.2) now connect nine quantities composed
of three fundamental dimensions, and therefore must reduce to
relations connecling g — 3 =0 dimensionless ratios of these quantities.
A simple set of six such ratios is
, 2 ptn p 8

(117) [,zld, l,llld, l”Illd, -E) [)m, 9 [
rather than (7.3). In place of the dimensionless functions F,, F,
F, given by (7.4) it is now preferable to use those resulting from

14 [,
P p, and £
n Ptu

multiplying them by the dimensionless quantities )

respectively.
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In place of (7.6) and (7.9) we now obtain
(11.8) li=— p o+ H,L[[‘ Fy 8- Fy A4+ 0, Fs & dk,] ,

‘where the expressions of the coefficients /'y are

(11.9) Fy = Fysyx lf'“’j*'” x Igl[g lIIgC, »
- . . . . . . - ptn p 0
the coefficients Fy;5. being dimensionless functions of T

By (5.4), Fuooo =o0.. Here too the classical Newton-Cauchy-Poisson
law results if only the linear terms be retained. Notice also that ke
classical viscous compressible fluid is the lLimiting case t, o of the
Reiner-Rivlin fluid.

For the Reiner-Rivlin fluid it is not the number 3 defined by (8.1),
but rather the number %, :
(11.10) B,.=1,d,
which is of primary importance in similarity considerations. The
criterion for the validity of the classical theory becomes %, <1, or
' <€d : the classical theory becomes inadequate as the vorticity or the
rate of déformation approaches the natural frequency t,' of the fluid.
Thus the higher order terms in the Reiner-Rivlin theory represent
‘““memory "’ effects, while those in the theory of the Stokesian fluid
are appropriate for a fluid without ¢ memory " subjected to low
pressures.

12. AN ExaMpLE : sHEARING FLOwW. — To illustrate the difference
belween the Stokesian and Reiner-Rivlin fluids, we now consider the
case of a rectilinear shearing flow

(12.1) z=f()) Y=o, i=o;

following the analysis of Rivlin (**).  All the components of d except
d*, = d,” vanish

1 (a
0 ;f 0
(12.2) d—= _I_f, o ol
2
0 0o o0

() [1948, &, §15].
Journ. de Math., tome XXIX. — Fasc. 3, 1950. 3o
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and we have

(12.3) Id:o,’ IId:—%f"l, g = o.
By (11.2), then
[Caie N :J'l(— ‘}:12,0>
(12.4) yo
t‘,:d'l(\—‘};‘-,o)é

Notice that ¢", is an odd function (*®) of d+,, while ¢", and (", are
even (*") functions of d*,. Since &= o0, when f’= o the dynamical
equation become simply ¢/ ;—o. Hence ¢, = C,, where C, is a
constant specifying the uniform resistance per unit area. Thus
(12.4,) yields

(12.35) j":ﬂ(— Ji?, o):2C1.
3
or, in the notation (11.9),
, th [P\D
(12.6) an,m< z{ > — G,
Thus such a flow is possible only when the ratios ha ﬂ, and £~ are
ptn 0, P,

functions of y alone. For simplicity, suppose indeed that the coeffi-
cients Fi, may be taken as constant. Then for any finite approxi-
mation, there are an odd number of possible velocity profiles /'

(%) Cf. §18, ('2) of the succeeding Memoir.

(27) Here we may tske note of the theory of Girault [1931. 1, Chap. III], who
attempled to generalize the Navier-Stokes equations by means of Stokes’s
principle, but at once added the assumption that when a flow is reversed all the
stresses change sign. Thus he concluded that no terms of even degree in the ¢//;
can occur in the general expression for #;. Premise and conclusion are alike
false. In the shearing flow under consideration, for example, if the flow if
reversed the shearing stress ¢%) should indeed change sign, but if the cross stress
¥y should change it would imply the absurd conclusion that if pressure upon
the y =const. planes be required to maintain such a flow from left to right,
then tension is required for a -similar flow from right to left. Girauit’s theory
fails altogether to reveal the basically important phenomenon of cross-viscosity,
and its application by Viguier [1947, 3] to boundary layer problems thus cannot
vield correct results.
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salisfying (12.6) and yielding the same value of the resistance C, :
all are linear. In the case of a second order theory only the classical

f= 2Cry + C, is possible, (**) bul in a third order theory there may

-_ nl
P 1900

be one or three profjles, depending upon the values of Cy, Fy 900, Fio10,
oy and 4,. [t is not unlikely that of all the possibilities for a given C,
only one will satisfy the thermodynamic requirement that the
dissipation of energy be positive (**). In any case the pressure p is
determined from the equation

(12.7) t“",:—[1+¢‘72<)~;f;,()}Z—_C;,,

where C; is a constant. Since f’ is constant, p may assume an
arbitrary constant value. Just as in the classical theory, then, we
may select the pressure and the specific resistance at will. The
general case 1s distinguished by : (A ) Cross-viscosity : a normal stress
¢, must be exerled on the shearing planes in order to produce the
flow, and there is a normal stress ¢*, in the direction of flow, and
(B) Muluplicity of solution : more than one linear velicity profile
yielding the same resistance, but different cross-stresses, may exist.
Notice that the resistance as a function of the profile /7, which is the
classical subject of measurement, is independant of the second coeffi-
cient F ,, and its departure from the classical value is an effect of third
order in the number B, = t,d; the second order effect of CTOSS-vIsCOSILy
depands only on &, and has no influence upon theresultof the classical
measurement. So much for the Reiner-Rivlin fluid.

For a similar flow in a Stokesian compressible fluid, again we
deduce (12.4), but by (7.6) and (7.9) these conditions now take the
form.

n oy ,i; "2 j
‘ Z/FIOJO(— ‘u&'z) =G,

3" AT
[ (e 558" 1) (- 5 =

(12.8)

(**) Boussinesq (1868, 1, Note 1] observed that in a second order theory the
resistance is the same as in the classical theory.
() Cf. §29 of the following Memoir.

3o.
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The possible velocity profiles /' now depend upon the pressure p as
well as the resistance C,; or, otherwise expressed, for a given velocity
profile f' the resistance depends upon the pressure.  As the pressure is
reduced, the resistance is diminished, as should be expected in a gas.
Both in the classical theory and in the second approximation we have

Unf Figoo=2C,, but in the third approximation the resistance s
P F g
3 p?
for the same velocity profile f'.

diminished by Jrom the value predicted by the classical theory

15. Heuristic piscussion of HEAT rLow. — In order to solve nearly
any sort of boundary problem concerning a compressible fluid it is
necessary to employ not only the dynamical equation but also the
energy equation. Since the energy equation conlains the heat flux
vector ¢;, some sort of definite form for this vector in terms of the
other variables is required.

Now the flow of heat is most evidently associated with temperature

~differences. According to the celebrated hypothesis of Fourier (*°),
when a conducting material is confined between infinite parallel plane
boundaries, which are maintained at a constant temperature difference
Af, heat energy must be supplied at a rate given by

heat flow AD
T — A==
area distance between walls’

(13.1)

wherex is a quantity called the coefficient o f thermal conductivity, which
is independent of the other magnitudes in the formula, but dependent
upon the particular substances. The analogy between (4.6) and
(13.1) is immediate, heat flow being the analogue of force (or heat
energy the analogue of momentum) and temperature the analogue of
velocity. The dimensions of z are MLT*&~'. The differential
form of (13. 1) for thermally isotropic media is (*')

(13.2) qi:Axe,i.

We are not concerned here with the exactitude of Fourier’s law

(%) [1822, 1, § 65].
(*t) [1822, 1, § 138].
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(13.2); suffice that a crude experiment indicates it to be a rough
approximation, for our only purpose at the moment is to indicate
that in general the heat flux ¢, should depend upon the temperature
gradient 0 ;and a quantity x of dimensions MLT &7 The thermal
conductivity x is observed to be a function of temperature, and more
generally we may suppose that in a fluid it depends upon the thermo-
dynamic slate.

14. Posturate For THE HEAT FLUX VECTOR. — The foregoing remarks
suggest that our definition of the Stokesian fluid of paragraphe 5
should be amplified by the following three further postulates :

IV. There exists a material constant +.,, called the natural conduc-
livily, whose dimensions are

(1h.1) dim %, —= —%
V. The heat flux q; is of the functional form
(1!&2) ql‘:f(Zm 00;])m> P 03.0,1')5

and is analytic an function of 0 ;

VI. If6 ;= o then q;=o.

The natural conductivity z, is a conslant, not a function of tempe-
rature, and thusis not to beidentified with the ordinary conductivity z.
Indeed it will appear [cf. (16. 3)] that «, is the dimensional part (}f/.,
just as ., 1s the dimensional par of

15. TuermALLY 150TROPIC FLUIDS. — Erom (14.2) and the assumed
analyticity of ¢; we have
(15.1) qi:l{[+kij0’j+ /r,-/'k(),,-()"‘-f—...,
where £;, ki, .. ., are certain tensors independent of 0 ;. By VI of

paragraphe 14, k;=o0. A fluid is thermally isotropicif the coefficients
in the expansion (15.1) reduce to numerical tensors. Now the only
numerical tensors at our disposal are multiples and products of &/,
8k, ..., and e¥*, Hence (15.1) reduces to

(15.2) 71:(5'0,1’7
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where the function G is of the form
(153) ’ g/:f(lo, Any Ompnupro))
where IOE 6,,-6"}

D
16. THE FORM OF THE COEFFIGIENT G. — Now the quantity ;‘1 1s dimen-
(73

sionless, and hence the relation

(16.1) i :f(l()z Lny 00:[71113}77 0)

%n

connects six quanlities composed of four independent dimensions,
and so must reduce to a relation connecting 6 — 4 = 2 dimensionless

ratios of these quantities. For the desired ratios we may select -, 02
m 0
‘Thus (15.2) becomes simply
(16.2) qi—=— =0
where
2 p 0y,
(16.3) Z_ﬁf<pm’ 00>,

the Stokesian flurd obeys Fourier's lasv of heat conduction.

17. ProvisionaL concLusions. — It may at first sight seem somewhat
surprising that in the theory of the Stokesian fluid while the classical
Newton-Cauchy-Poisson law for the siress turns out to be only a
first approximation, nevertheless Fourier’s law for the heat flux
remains unchanged. The underlying reason for the difference
is the separation of stress and heat flux as associaled each separately
with only one macroscopic phenomena-velocity gradients give rise to
stresses and thermal gradients give rise to heat flow. This distinction,
which we have embodied in our defining equations (5.3)and (14.2),
from a physical point of view is an artifical one, which in reality should
appear only as a first approximation to a broader concept of fluidity.
The formulation and development of this broader concept is the
subject of the succeeding Memoir.
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APPENDIX.

PROPERTIES OF CONTINUOUS MEDTA IN GENERAL.

We summarize here these properties of continuous media with
which the reader of the foregoing memoir has been presumed to be
familiar. If ds* be the squared element of arc length and — the
symbol of material differentiation, we have

(A1) dsi=o dyj dat da,
where the rate of de formation tensor d;; is given by
(A.2) dy= é(x'[,,+ @0,

&, being the velocity vector. Thus the components d;; are measures
of the local and instantaneous rates at which the medium is suffering
deformation. Their physical components are of dimension T,
where T is a unit of time. Similarly the components w;; given by

-

(A.3) wy= (&= %))

are measures of the rate of rotation (vorticity). The principle of
conservation of mass (or continuity of motion) is expressed by Euler’s
equation

(A.4) logp + 2% ;=o,

where p is the density, whose dimensions are ML, M being a unit
of mass and, L a unit of length. The principle of conservation 'of
momentum is expressed by Cauchy’s equations

(A.5) 4 pfiz=pit, = o,
where ¢7 is the stress tensor and f* is the extraneous force vector. The

dimensions of the physical components of #; are ML~ T~*. The
mean pressure p, is given by the definition

(A.6) Pm==— %lii.
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Let ¢ be the internal energy (per unit mass). Then the principle
- of consercation of energy implies that the rate of change of the
total energy (internal plus kinelic) of any material volume must
equal the sum of the rate at which the extraneous force does work
upon it, the rate al which the stresses upon its boundary do work,
and the rate at which thermal energy flows into it from the exterior,
in terms of the heat flux vector ¢'. The resulling equation may be
simplified by (A.5), yielding finally the Fourier-Kirchhoff-
C. Neumann equation

(A.7) pi ==t dii— ¢i,.

Thus ¢; d/;, the stress power, is the rate at which the stress does
work, per unit volume. Note that the stress power vanishes in any
rigid motion (d';=0). The equation (A.7) may be taken as a defi-
nition of the internal energy il we please, for from it the value of ¢ for
each parlicle may be calculated up to an arbitrary constant, if the
other variables be known. The dimensions of ¢ are L.*T2; those
of ¢'are MT—*. Usually it is assumed further that each particle of
the continuum constitutes a thermodynamic system, that is, regardless
of the state of motion each particle has an equation of state

(A.8) e=2e(v; )

where ¢ is the internal energy (par unit mass), v is the specific volume
(VE é), and v is the entropy (par unit mass). The form of (A.8)

may vary from one particle to another, but it is to remain constant
in time; that is, for the presenl simple analysis the medium may be
heterogeneous, but if changes of phase, chemical reactions, etc., are
to be included, further elaborations are required. Then if the
pressure = and temperature 9 be defined by

13 0¢
(A.g) ‘ .E——((%)Y‘s GE<%>'~
we have 7
(A.10) =0 — 7y,

The dimensions of = so defined are ML= T2, the same as the
dimensions of ¢; and of p,. While we are here considering the
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enlropy as a primilive variable, in accord with common physical
practice we shall take a unit of temperature & as the fundamental

thermal dimension; then the dimensions of nyare L*>*T*&~'. Letan
extra stress ¢'; be defined by ’
(A.11) vh=p o+l

where p is an arbitrary scalar. Cauchy’s laws (A.5) now become
(A' l")‘) ‘)ii,/-' p,z+ P/;':: (Jl,, Vl‘/‘i‘__ (’/'[.
Combination of (A.7), (A.10), and (A.11) yields

(A.13) oy = (r —p)logy + & — ¢,

where ® is given by

(A.1h) D = ;.
We have :
(A.13) t div—=® + (— plogv).

While it is tempting to regard this equation as a decomposition of
the stress power into a portion associated with change of shape plus
a portion associated with change of volume, since p remains up to
this point an arbitrary scalar, no specific inlerpretation can yet be
justified. Here we observe a fundamental distinction. I‘or an
in compressible medium (A . 13) reduces simply to

(A.16) 00 =0 — ¢

Thus, Sfor an incompressible substance, swhatever the choice of the
scalar p in the decomposition (A..11), ® is the rate at which mechanical
work is being transformed into thermal energy (per unit volume).
For a compressible substance, however, in order to obtain the simple
equation (A.15) and the consequent unique interpretation of ®@, it is
necessary and sufficient to add the definition

(A1) pP=T,

which reduces the number of unknowns by one. The total number
of unknowns, however, is the same for compressible and for incom-
Journ. de Math., tome XXIX. — Fasc. 3, 1g5o. 31
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pressible media, since for the latter ¢ is a given function or constant,
while for the former it is an unknown. With this distinction, then,
the same formal structure may be employed for describing the ther-
modynamics of both compressible and incompressible media, although
the meanings of some of the variables are not quite the same in the
two cases. When (A.17) is adopted for compressible media, the
decomposition (A.11) acquires primary physical significance, for it
resolves the stress into two portions, the first, — p 2%, being that
whose work (if any) is always mechanically recoverable, and the
second, ¢';, being that whose work (**)in deforming the medium is
irretrievable lost as heat, which may be stored in terms of entropy or
conducted away. The decomposition (A.15) similarly resolves the
stress power into dissipated and recoverable portions; part of the
work done in producing a change of volume is generally recoverable,
while partis not. It cannot be too strongly emphasized that : (1) no
resolution of the stress other than that consequent upon (A.17) can
yield the simple energy equation (A.16) for compressible media;
(2) both = and p,, are defined variables whose equations of defini-
tion (A.6) and (A.g)show them to represent quite different physical
concepts, and there is no reason whatever a priori ro suppose them
equal or even related 1o each other, and (3) the power loss @ 1s a
defined quantily which exists in all contlinua, requiring no special
hypotheses (**).

Finally, the irreversibility of many processes is expressed by the
Clausius-Duhem inequality

(A.18) ' fp’h(/V+95 7’615550,
v . s

where V is an arbitrary volume and § its bouding surface.

(3*) It would not be correct to conclude that from ¢!;=2 o it necessarily
follows that dissipation takes place, for it is possible that ¢/; does no work, i. e.
vl diy= o.

(*) @ is not to be confused with Rayleigh’s dissipation function, which for
continuous media could better be called a ¢¢ stress potential ", and exists only
in very special circumstances.
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