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Boundedness in a topological space

By SZE-TSEN HU (‘).

In 1939, J. W. Alexander|!|(?) introduced the notion of bounded-
ness inlo the realm of general topology. It 1s a contribution of real
importance, for it opens a vas region of investigalion which is
so far foreign to lopology. IHowever, this promising Note of
J. W. Alexander has been completely neglected during the lastseven
years since ils publicalion. A possible reason of its being neglected
might be that boundedness is not a topological invariant. But, not
all properties studied in topology are invariants under homeomor-
phisms; uniformity is an outstanding example.

The object of the present work.is to give a detailed axiomatic
approach of boundedness in general topology and its consequences.
The original definition of J. W. Alexander yields an unsatisfactory
result that every non-bounded point of the space must be an isolated
point a fact which does not agree with the usual notion of geometry,
as for example, the points at infinily of a projective plane form a line
at infinity but not a set of isolated points. Instead of combining
boundedness within the definition of a topological space as
J. W. Alexander did, we consider a topological space given a priori
and introduce a boundedness by picking up a family of subsets,
called bounded sets. Thus the topology of a space is independent

(1) The author acknowledges his gratitude to Professor M. Il. A. Newman
and Mr. Shaun Wylie for their helpful suggestions and inspiring criticisms.
(*) Numbers in bracketls denote references in the bibliography at the end of

the paper.
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288 - SZE-TSEN HU.
of the boundedness introduced, and the latter is rather a super-
structure built upon the given space.

With regard to topological spaces, no separation axiom is assumed
unless explicitly staded. Following N. Bourbaki, we shall denote

by @ the empty set, by M and M respectively the closure and the
interior of the set M. Following S. Lefachetz continuous transforma-
tions will be called mappings.

1 Bouxprpness anp eNiverses. — Dermvition 4. 1. — A boundedness in
a topological space X is a non-void family of subsets {B; of X, called
the bounded sets of X, satisfying :

(1.11) evcery subset o/ a bounded set is bounded ;
(1.12) the union of a finite number of bounded sets s bounded

From (1.11) 1t follows immediately that

(1.13) O &s bounded;

(X.14) the intersection of a non-voud collection of bounded sets is
bounded.

Dermvition 1.2. — A universe is a topological space with a given
boundedness.
Derinition 4.3, — A unicerse X is said to be bounded, if the whole

space X is a bounded set and hence every set is bounded.

The following theorem is trivial.

s
!

Tueoren 1.4. — If a universe X with a boundedness {B] is not
bounded, then the family {X —Blo f the complementar y sets X — B,
B € {B{, has the following properties :

(1.41) none of the sets X — B s bounded ;

(1.42) { X — B} form a filter 3, p. 20|, called the filter at infinity
o/ the universe X.
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2. CaLcuLus oF BOUNDEDNESs. — Since a boundedness in a space X is
but a family of subsets, the calculus of boundednessin a given space X
can be nalurally introduced by the analogue of the calculus of sets.
Throughout this paper, German capitals are only used to denote
families of subsets, e. g. boundedness, coverings, filters, etc...

Dermvition 2.1. — Given twwo boundedness & and 03 in a given
topological space X, we say that &L is stronger than 03 and @ is wealfer
than &, if A D a.

It is clear that the system of all the boundedness in X is properly
ordered by D, |7, p. 3]. The weakest boundedness is that which
consists only one member, i. e. the only bounded set is @; the
strongest is the one in which X'itself is a bounded set and hence every
set is bounded.

Tueorem 2.2. — Given an arbitrary family & ={ A ! of subsets of a
topological space X, there exists a weakest boundedness 3= {B} in X
containing A, which will be called the boundedness generated by A.

Proor. — Lel (B:{B} denote the family of subsets of X which
consists of the totality of the subsets of the finite unions of the
famility &. It is easily seen that @3 contains & and is a boundedness.

On the other hand, let. ¢ be an arbitrary boundedness which
contains the family @. By (1.12), € conlains every finite union
of @; then by (4.11), € contains 3. Hence C is stronger than @,

and our theorem 1s proved Q. E. D.
Drrmvition 2.3, — Given a system @3; of boundedness in a topological

space X.. indexed by a set 1, |5, p. 3], the two boundedness generated

by the union U @; and by the intersection n Gb; are respectively

iel iel
called the joz'nv 03; and the meet A B; of the given system of boun-
iel icl

dedness 33;, 1 € 1.

Tueoren 2.4, — ALB n 33;.

iel il
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Proor. — It is enough to prove that the intersection n @, 1s a
, el
boundedness. Let Be n @;, then B e @&; for each 7 € I; hence
L iel

by (1.11), every subset of B belongs to each &3;, t € I. Therefore,
n @; satisfies (1.11).  Similarly, n 03; also statisfies (1.12).

icl iel

Turorem 2.5. — The join V‘Bi consists of all the subsets of X
iel
swhich are of the form U B;, where B, € #; for each i € 1 and at
iel
most a finite number of the B; are different from the empty set 0.

Proor. — Let B be a set of the form described in the theorem,

then B is a finite union of the family U @;. Hence we have
iel
Be V(P»L
el
- Conversely, suppose A be an arbitrary set of the boundedness

VGSL-, then A is by definition a subset of a finite union ofU(B,».

ietl g ) iel

Since each B, satisfies (1.11), A itself is a finite union ofU a3;.
i€l

Suppose A=A, UA,U...UA,, where A,, A,, ..., A, are
members ofUO?yl-. For each A,(p=1, 2, ..., ¢), we choose

iel .
an 7,€l such that A,e®;,. Let B":U A, then A:U B; 1s of
ip i iel
the described form.
Tueoren 2.6. — The boundedness B3 N @B,V ...V @, consists of

all the subsets of X which are of the form B,uB,u...UB,
where B,€ ®3,(p=1, 2, ...,q9). The boundedness B3, NG, N\... N3,
consists of all the subsets of X which areof the formB,nB,n ...N B,
where B,€ G3,(p=1,2, ..., q).

Proor. — This theorem is an immediate consequence of (2.5)

and (2.4).
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Tueoren 2.7. — The system of all boundedness in a topological
space X is directed both by > and by C |7, p. 10].

Proor. — For an arbitrary pair of boundedness @& and @ in X, the
join @ V @ is stronger than both of them and the meet A A @3 is

wealeer than both of them.

3. THE CLOSURE AND THE INTERIOR OF A BOUNDEDNESS. DEFINITION 3.1, —
Given a boundedness > = | B | in a topological space X, the boundedness

@B generated by the family |B| is called the closure of @3 and the
boundedness 63 generated by the famuly. { B is called the interior of &.
The following two theorems are trivial.

THEOREN 3.2. — [or an arbitrary boundedness @ in a topological
space X, we alivays have BC BC B3

TrEOREM 3.3. — For any two boundedness € and @ in a topological
svace X, D@ implies D @ and A D .

Derisition 3.4. — .| boundedness @ is said to by closed if (3 =33,

open i1f 3 = (@, and proper i/ it is both closed and open. A universe X
s sard to be closed, open, or proper, according as its boundedness is
closed, open, or proper respectively.

TreOREM 3.5, — For a given boundedness 03 in a topologrcal space X,
the following conditions are equivalent :

(3.51) 03 1s closed ;
(5.52) 63 is generated by ils subfamily of the bounded closed sets;
(3.53) the closure of every bounded set is a bounded set.

Proor. — (3.51) > (5.52). Since @ is closed, ®= @3; there-
fore, %B: C ®. On the -other hand, if B is a boundedclosed set,
then B:EG{E}. Hence’é]}f’ is the subfamily of the bounded
closed sets, and ® = (@ is gencrated by % B %

(9.52) > (5.53). Let B be an arbitrary bounded set of (.
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Since 3 is geﬁerated_ by its subfamily { I} of the bounded closed sets,
B 1s a subset of a finiite union of bounded closed sets. Hence there
exists a bounded closed set IF such that BcF. It follows that the
closure B¢ F is a bounded set.

(3.53) > (35.51). Since Be® for each Be®, we obtain B @&.
By (5.2), 3 > @®; hence (3= (». Q. E. D.

Remark. — It is easy to see that the boundedness originally introduced
by J. W. Alexander is a special case of closed boundedness.

Turoren 3.6. — Fora given boundedness & in a topological space X,
the following conditions are equivalent : :

(5.61) @ is open

(5.62) 3 is generated by its subfamily of the bounded open sets;

(3.63) ecery bounded set is contained in the interior of some bounded
set.

(

Proor. — (5.61) > (5.62). Itis clear that {B}is the subfamily ‘
of the bounded open sels of @. Since @ is open, (3= G3; hence @ is
generated by {B § - '

(8.62)->(5.63). Let B be an arbitrary bounded set of @.
Since @3 is generated by its subfamily { G} of the bounded open sets,
B is a subset of a finite union of bounded open sets. Hence there
exists a bounded open set G such that Bc G.  Hence (5.63).

(3.63) - (5.61). Since every bounded set is contained in the
interior of some bounded set, then & C @. By (3.2), G C G3; hence
B=® and @ is open. :

Combining (3.5) and (3.6), we obtain the following theorem
concerning proper boundedness.

TueorEM 5.7. — For a given boundedness 33 tn a topological space X,
the following conditions are equivalent : '

(D.71) 03 is proper;
(8.72) @ s generated both by its subfamily of the bounded closed
sets and by s subfamily of the bounded open sets ;
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(3.73) the closure of every bounded set is contarned in the interior
of some bounded set.

Turoren 5.8. — Given a non-coid family | A} 0/ closed (open) sets
of a topological space X, satisfying :

(5.81) cvery closed (open) subsetof a set A of | A} is a set of {A};
(5.82) every finite union of { A} belongs to { A |, ) '
then there exists a unique closed (open) boundedness in X with { A} as
the family of the bounded closed (open) sets.

Proor. — Let us prove the theorem for closed sets {A}. We
define a boundedness in X by calling a subset B of X 1o be a bounded
set, if the closure B&{A}. Then itis easily verified that 3 = {B}is
the closed boundedness generated by the family {A}. Nowlet B be
an arbitrary bounded closed set of @3, then B=B & {A}. Conver-
sely, every set A€{A}is a bounded closed set of 3. Hence {A}is
the family of the bounded closed sets of @. The uniqueness of 3
follows from the fact that every closed bouudedness is generated by
its family of the bounded closed sets. Q. E. D.

Tarorem 3.9. — Given a family {F} of closed sets and a family { G}
of open sets of a topological space X, statisfying :

(3.9 {F} and { G} both satisfy (3.81) and ¢5.82);

(8.92) for each ¥ €|}, there exists a set Gye | G| with Gy DF,
(3.93) for each Ge{ G}, there exists a set Foe{F} with F; > G,
then there exists a unique proper boundedness in X with {F} and { G} as
its famuilies of bounded closed sets and of bounded open sets respectively .
Conversely, the families of bounded closed sets and of bounded open
sets of an arbitrary proper boundedness in X satisfy (5.91) - (5.93).

Proor. — The second part of the theorem follows from (1.11),
(1.12), and (3.73). It remainsto prove the first part of the theorem.
Let @ be the closed boundedness generated by {F}, and @ be the
open boundedness generated by { G}, as are described in (5.8). For.
an arbitrary A € @, thereisasetI'e {I"} such that AcF. By (5.92),
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there exists a set G, €| (; such that G;DFDA; hence A€,
and AC@. Similarly, we can prove that A > @. Therefore, =@
is a proper boundedness in X; and {I'}, { G} are the families of the
bounded closed sets and of the bounded open sets by (3.8).
' Q. E. D.

It will be seen in § 13 that the proper boundedness is the most
important one. However we shall give two examples to show the
existence of non-proper boundedness.

Example (1). — A boundedness «which is open but not closed. — Let X
be a Hausdor{I space, and # be a non-isolated point of X. Define a
boundedness in X by calling a subset B of X to be bounded if B does
not contain #. The conditions (1.11) and (1.12) are trivial. The
boundedness 3 ={B!is open, for each bounded set B is contained
in the bounded open set X — 2. Since z is not isolated, the closure

X — & of the bounded set X — « is the space X which is not bounded
by our definition. Hence @3 is not closed.

Example (") (2). — .| boundedness swhich is closed but not open. —
In the Hilbert space R”, let X,(n=1, 2, ...) denole the closed
interval on the z,-axis defined by o /:v,ILI and zi=o0 ({£n).

Let X denote the union U_, X,. Define a boundedness in X by

calling a subset B of X to be bounded if the closure B of B in X is
compact. The conditions (1.11) and (1.12) are trivial. The
boundedness @3 = | B} is closed, for the closurc B of a bounded set B
1s by definition bounded. That ¢3 1s not open will be proved as
follows. Since X, is compact, it is bounded. It & is open, then
there exists a bounded open set G which contains X,. Since X, is
compact, G may be assumed to be an z-neighbourhood of X, in X for
a sufficiently small e > 0. Irom our definition of the boundedness

it follows that G should be compact. Let y, denote the point of X,

with @#,=¢; then y,&€ G foreachn=1, 2, ... . The sequence{y,}"
has no cluster point, which is a contradiction to the compactness

of G.

(1) The author 1s grateful to Dr. A. J. Ward for this example.
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A. THE BASES OF A BOUNDEDNESS. — DeriNttion 4. 1. — 1 subfamily
A= {Al of bounded sets of a given boundedness 3 = { B} in a topolo-
gical space X 1s called a basis of @, if every bounded set BE L is a
subset of some A€ Q. A s called a closed (open) basis of B, if each
set A € A is closed (open).

It follows from (3.6) and (5.7) that the family of bounded closed
(open) sets of a closed (open) boundedness 3 forms a closed (open)
basis of @&. ' : '

Tueorem 4.2, — A family &= {A} of subsels of a topological
space X ts a basis of some boundedness in X, i/ and only if the union
of any tivo sets of €U is contained in a set of €.

Proor. — Necessity. — Suppose C Lo by a basis of a boundedness
@ in X, then @dc®. Let A,, A, be two arbitrary sels of .
By (1.12), A,UuA,€d®. Since @ is a basis 6f B, A,UA, is a
subsel of a set A € L.

Suffictency. — Suppose the condition be satislied, and let @ be the
boundedness gencrated by L. Since the union of any two sets of A
is contained in a'set of A, then the union of any finile number of sets
of @ is contained in a set of @. Therefore, every set of (3is a subset
of some sel of @ ; and hence (L is a basis of (3. 0. E. D.

Tueorem A.3. — I/ the boundedness 33 in X is generated by &, then
the finite unions of €L form a basis o/ J3.

Proor. — Let ¢ be the family of finite unions of @, then @*
generales (3. Since @* satisfies the condition in (4.2), @" is a
basis of @. _ : © Q. E. D.

Tueoren 4.%4. — In a given topological space X, a necessary and
suffictent condition for the boundedness 33* with a basts @* to be stron-
ger than the boundedness ® with a basis @ is that each set A € @ is
contained in a set A*€ A*.

Proor. — Necessity. — Suppose 3* D @3, and let A be an arbytrary

Journ, de Math., tome XXVIII. — Fasc. 4, 1949. 37
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set of @. Then we have Ae€®*. Since @*is a basis of @*, A is
contained in a sel A*e @”.

Suffictency. — Let B be an arbitrary set of . Since €U is a basis
of 3, B is contained in a set A€@. By our condition, A is contained
inaset A*e@*. Hence BB e ®* and 3> ®. Q. E. D.

Derisition 4.5. — .U family & ={ A} of subsets of a topological
space X is called a basis of boundedness, if it is a basis of some boun-
dedness in X. Two bases of boundedness are said to be equivalent, if
they are the bases of the same boundedness.

The following theorem is an immediate consequence of (4.4).

Tueorem 4.6. — Two bases & and & of boundedness in X are
equivalent, if and only (f each set of & is contained in a set of * and
each set of A" is contained in a set of Q.

Tueoren 4.7. — A boundedness 3 in X is closed (open) if and only
of 1t admats a closed (open) basts.

Proor. — Let us prove the theorem for closed boundedness. If @
is closed, then the family of the bounded closed sets of @ is a closed
basis of @3. Conversely, if @ admits a closed basis @, then each
bounded set B € (31s contained in a bounded closed set A€ @. Hence

Bis bounded and @ is closed by (3.5). Q0. E. D.

5. BounDrpNESs WITH A COUNTABLE BASIS. — Derinition 5.1, — 4
bounded set B, of a boundedness 03 in a topological space X is said to
be mazximal, if ecery bounded set of 03 is a subset of B,.

In example (1) of § 3, the set X-z is the maximal boundeéd set of
the boundedness (3 defined there.

Turorem 8.2. — For a given boundedness 3 in a topological space X,
the following conditions are equivalent :

(8.21) @ has a maximal bounded set B
(5.22) @ admits a finite basis; -
(5.23) the union of any number of bounded sets 1s bounded.



BOUNDEDNESS IN A TOPOLOGICAL SPACE. 297

Proor. — (5.21) = (5.22). The maximal bounded set B, itself
form a basis of (.

(3.22)->(5.23). Suppose 3 admitsafinitebasis@={A4,..., A, |,
then the union A=A, U ... UA, is a bounded sct and forms a
basis of 3. Since every bounded set is a subsel of A, the union of
any number of bounded sels is still a subset of A ; hence (5.23).

(5.23) > (8.21). Let B, be the union of all bounded sets of @&.
B, is bounded by (5.23), and hence it is a maximal bounded set.
: 0. E. D.

The following theorem is trivial.

TueorEM B.3. — Suppose the boundedness 03 in X has a maximal
bounded set B,, then :

(5.31) ® is closed if and only i f B, is closed.:
(8.32) @ isopen if and only if B, 1§ open;
(5.33) @ is proper if and only if B, is both closed and open.

The following theorem is an immediate consequence of (5.33).

THEOREM 8.4. — A connected proper unicerse swhose boundedness
admults a finite basis is bounded.

Tueoren 8.5. — If @ is an arbitrary basis of a boundedness & with
a countable basis but without maximal bounded set, then there exists a
countable basis C of B which consists of a strictly increasing sequence
of sets of QL. :

Proor. — Let $={D,, D,, ...} be an arbitrary countable basis
of @3. Define a subfamily ¢={C,, C,, ...} of & as follows.
Choose C, €@ wich containe D,. Sljppose that C,, C,, ..., C,
have been so chosen from & that C; contains the union C,_, UD; and
1s different from C,_, for :=12, ..., n. Now there exisis at least.one
set B, € which is not a subset of C,, for otherwise C, would be a
maximal bounded set of 3. Since @ is a basis of 3, there exisls a
set C,., €@ which contains the union C,uD,.,uUB,. Thus a

~

strictly increasing sequence of sets € ={C,, C,, ...} has been chosen
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from & such that D,cC, for n=1, 2, .... Cis a basis of @, for
every bounded set B & @ is a subset of some D, and therefore a subset
of C,. This completes the proof. 0. E. D.

TreOREM 3.6. — A4 proper boundedness 03 whith a countable basis but
without maximal bounded set admits an open basis G which consists of
a strictly increasing sequence of bounden open sets G,, G, ..., G,, ...,

such that G,c G,., foreachn=1, 2. ....

Proor. — By (5.5), & admits a basis ¢={C(,, C,, ...| which
consists of a strictly increasing sequence of bounded sets. Let G, be |
an arbitrary bounded open set. Suppose that bounded open sets Gy,
G., . .., G,have been so chosen that G; contains the union G;_,UC,_,
and is different from G,_, for each i=2, ..., n. Now there exists
al least one bounded set B, which is not contained in G, for other-
wise G, would be a maximal bounded set of 3. Since @ is closed,
G, is a bounded set. Since 3 is open, lhere exists at least one
bounded open set which contains G,uUC,uB,. Choose such a set
for our G,.,, then G, , contains G,uUC, and is different from G,.
Let G={G,, G,, ...| be the sequence of bounded open sets thus
defined. It remains lo prove that ¢ is a basis of 3. Let B be an
arbitrary bounded set of 3. Since € is a basis of @3, B is a subset of
some set C, € € and hence a subset of G,_,. Q. E. D.

Remark. — We have also shown in the above proof that the leader
G, of the sequence § can be any given bounded open set and that

the sequence of the closed sets G, G, ..., G,, ... form a closed
basis of @3.

6. LocAL BOUNDEDNESS, POINTS AT INFINITY. — Drernmion 6.1, —
A point x of universe X is said to be bounded, if the set {x}| which
consists of the single pornt x is bounded; otherwise, it is said to be non-

bounded.

The set of all bounded points of X and that of all non-bounded
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points of X will be denoted by L =L(X) and W = W(X)) respec-

tively. The following theorem is trivial.

Tueorem 6.2. — L(X) @s the union of all bounded sets of X and
W (X)=X—L; therefore,

(6.21) L(X) is an open set and W (X) i a closed set, if X is an
open universe;
- (6.22) L(X) &5 an Fy-set and W (X)) s a Gi-set, if X is a closed

universe swith a countable basts.

Dermvition 6.3. — A point x of a universe X is said to be finite, if it
is an interior point of some bounded set; otherwise, it is called a point at
infinity of X. The set of all finite points is called the kernel of X,
denoted by X = A(X); the set of all points at infinity is called the set at
infinity of X, denoted by Q = Q(X). '

The following two theorems are obvious.

*

Turorem 6.4. — A(X) is the union of all bounded open sets of the
universe X; therefore, A(X) is open and Q(X) is closed.

Tueorem 6.5. — For an open unicerse X, we have
LX)=A(X), W(X)=(X).

" For a boundedness which is not open, a bounded point need not be
finite. In the example (2) of paragraph 3, the point £,= (o, o, ...)
is bounded by definition. &, is a point at infinity, for the closure of
every e-neighbourhood of &, in X is not compact and hence there is
no bounded set containing &, in its interior.

Dervition 6.6. — A4 universe X s said to be locally bounded at x,
if x is a finite pornt of X. X 15 said to be locally bounded, if each
point of X s finite.

Tueorem 6.7. — Suppose V=V | be a base of the open sets of a
locally bounded unicerse X, then there exists a subfamily V., of ¥
which consists of only bounded open scts and which forms already a
hase of the open sets of X.
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Proor. — Since X is locally bounded, for each point z € X there is
abounded openset U, containingz. Then we obtain a covering { U, |
of X with bounded open sets.  Let 27, denote the totality of the open’
sets V€% such that V is contained in some U,. It remains to prove
that 9, 1s still a base ol the open sets of X.

Let G be an arbitrary open set of X and @ be an arbitrary point
of G. Let G,=U,NnG. Since?Visa baseofX, thereisaset V, e
such thatzeV,.cG.. Then V,e?, and G = U V..

. rxeG
‘ 0. E. D.

Tueorem 6.8. — 4 comPact subset of a locally bounded universe is

bounded.

Proor. — Let X be a locally bounded universe and X, a compact
subsel of X.  Since X is locally bounded, for each point x € X, there
is a bounded open set U, containing . The family {U,|x€X,}
forms a covering of X, with bounded open sets of X. Since X, is’
compact, there is a finile subfamily of {U,! which covers X,.
Hence X, is bounded. Q. E. D.

7. TRIVIAL BOUNDEDNESS AND COMPACT BOUNDEDNESS. — ['he boundedness
of a space is, in general, not a topological property. However, if
we define a particular boundedness topologically, it forms a topolo-
gical invariant. The most important of these topologically invariant.
boundedness are the trivial and the compact boundedness which were
used Lo construct the examples given in paragraph 3.

Deriztviox 7.1. — The trivial boundedness of a topological space X
1s that which makes X a bounded universe. The trivial boundedness of
.a topological space X relative to a subset X, ts that which makes X — X,
a mazimal bounded set.

Deriition 7.2, — The compact boundedness of a topological space X
ts that which consists of the totality of the subsets BC X such that the
closure B of B is comvact.  The compact boundedness of a topological
space X relatice to a subset X, s that which consists of the totality of
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the subsets B X such that the closure B of B is compact and does not
meet X,.

The following theorem is obvious.

Tueorem 7.3. — The compact boundedness of a topological space X
relative to an arbitrary subset X, (swhich might by empty ) is closed.

Tarorem 7.%4. — For an arbitrary topological space X, the following
conditions are equivalent :

(7.41) X &s locally compact:

(7.42) the compact boundedness makes X a locally bounded unicerse.

If, in addition, X be a Hausdorff space, then each of the cond:-
tions (71.41) and (7 .42) s equivalent to the following :

(7.43) the compact boundedness is open.

Proor. — The equivalence of (7.41) and (7.42)is trivial. Sup-
pose X to be a Hausdorff space. .

(7.43) - (7.42). Let x&X be an arbitrary point. Since the
closure « = x is compact, zis a bounded set of the compact bounded-
ness. It follows from (7.43) that there exists a bounded open set
containing x; hence (7.42).

(7.42) - (7.43). Let B be an arbitrary bounded set of the
compacl boundedness. By definition, B is compact. Since X is
locally bounded, for each x€DB there is a bounded open set G..
containing 2.  Since B is compact, there are a finite number of these
bounded sets, say G, G,, ..., G,, whose union G conlains B.
G is a bounded open set containing B; hence we have (7.43).

Q. E. D.

Tueorem 7.5. — The compact boundedness of a Hausdorff space X
relative to a subset X, is open if and only.if X, is closed and X — X, is
locally compact.

Proor. — Necessity. — Suppose the compact boundedness @ of X
relative to X, be open. Let x be an arbitrary point X —X,.
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Since x =x&€ X — X,, « is bounded. Since @ is open, there is a
bounded open set G conlaining . By the definition, the closure G
of G is compact and contained in X — X, ; hence X — X, is locally
compact. Further, we have proved that every point of X — X, is a
finite point. It is trivial that every point of X, is a point at infinity.
Hence X, as the set at infinity of an open universe, must be a closed
set.

Suffictency. — Suppose X, be closed and X — X, be locally
compact, and denote by @ the compact boundedness of X relative
to X,. Let B be an arbitrary bounded set of @, then B is compact
and -contained in X — X,. Since X —X, is locally compact, for
each z€B there exists an open set G, containing x such that the
closure G, of G, in X — X, is compact. Since X is a Hausdorll
space, G, is a closed set of X and hence G.. is the closure of G, in X.
Since B is compact, there are a finite number of these open sets,

. /7 —_—
say G, G, ..., Gr.,.,,, whose union G‘:U G,, contains B. Now

i=1

r'/
G-:U G, c X —X, is compact, G is a bounded open set contai-
i—=1

ning B. Hence @& is open. Q. E. D.

8. BouwpepLy compact uNiverses. — The notion of bounded com-
paclness, studied in the present paragraph, was introduced by
J. W. Alexander [ 1].

Derinirion 8. 1. — 4 universe X is said to be boundedly compact, if
every bounded closed set of X is compact.

‘Derinimion 8.2. — A collection of sets is said to have the finite inter-
section property, if every [finite subcollection has a non-empty inter-
section. '

Tueorem 8.3. — A universe X is boundedly compact if and only if
every collection of bounded closed sets vith the finite intersection
property has at least one common point.
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Proor. — Necessity. — Suppose X by boundedly compact, and
let {I'} be a collection of bounded closed sets with the finile inter-
section property. Let I, be a particular bounded closed set {I'],
then I, 1s compact. Let { F*} by the collection of closed sets of I,
which counsists of the lotality of the sets I"=Fnk,, Fe{l'}].
Let I¥}, ..., I, be an arbitrary finite subcollection of { [*|.  Since { I}
has the finite interscction property, F,, F,, ..., I, have a common
point, say «; hence I}, ..., I¥; have  as a common point and { F*}
has the finite intérsection property. Since I, is compact, { F*| has a
common point @, which is clearly a common point of the collec-
tion { I'}.

Sufficiency. — Suppose the condition be satisfied, and let Iy be an
arbitrary bounded closed set. Let{I7!be an arbitrary collection of
closed sets of F, which has the finite intersection property. Since I,
1s a bounded closed set, { '} 1s a collection of bounded closed sets of X.
Hence it follows from the condition that { I"} has at least one common
point and I, is compact. Q. E. D.

Dermxition 8.4. — A bounded covering of a subset X, of a universe X .
ts a collection of bounded sets of X whose union contains X,.

Tueoren 8.5. — A locally bounded universe X boundedly compact,
i/ and only if every bounded open cocering {U| of a bounded closed
set I'C X has a finite subcovering of Iv.

Proor. — Necessity. — Suppose X be boundedly compacl, and { U}
be an arbitrary bounded open covering of an arbitrary bounded
closed set ' X. By (8.1), I'is compact and, therefore, { U} has a
finite subcollection which covere I.

L 3

Sufficiency. — Suppose I be an arbitrary bounded closed sel of X
and { V| be an arbitrary open covering of I in X. Since X is locally
bounded, for each point €K there exists a bounded open set W,
conlaining z. Since {V} is an open covering of I' in X, for each
point z €l there exists an open set V,&€{V| containing . Let
U.=V.nW,, then the collection {U,! forms a bounded open

Journ. de Math., tome XXVIII. — Fasc. 4, 1949. 38
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covering of 1. It follows from the condition that { U, | has a finite

subcollection, say U,, U,, ..., U,, which covers F. Since
U.,=V.nW,_, the finite subcollection V., V., ..., V, covers F.
Hence I is compact. Q. E. D.

Tueoren 8.6. — If a closed universe X is locally bounded and
boundedly compact, then X s locally compact. ' "

Proor. — Let x€X. Since X 1s locally bounded, there is a
bounded open set G which contains z.  Since X isa closed universe,

G is a bounded closed set of X. Since X is boundedly compact,
G is compact. Hence X is locally compact. Q. E. D.
The following theorem is evident.

Tueoren 8.7. — Every universe X with the compact boundedness
relatice to a subset X, (swhich might by empty) is boundedly compact.

Therefore, bounded compactness is a property of the given boun-
dedness instead of the given space X. However, if the space X 1is
compact, then every universe X with an arbitrary boundedness is
boundedly compact. ‘

9. Swmveuician universes. — Throughout the present paragraph, let X
be a polytope in the sense of S. Lefschelz [ 6, p. 9} with {<'} as its
open simplexes.

Derizttion 9. 4. — The simplicial boundedness of a polytope X is the
one swhich is generated by the family {3} of open sumplexes. A poly-
tope X with the simplicial boundedness is called a simplicial universe X.

Turorsn 9.2. — The simplicial boundedness of a polytope X is
closed.

Proor. — Since the closure & of an open simplex & consists of a

finilte number of open simplexes, & is a bounded closed set. Let B
be an arbilrary bounded set, then there exists a finite number of open
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I,’ 7
simplexes &, @, ..., & such that BC U ;. Hence Bc Udi 1S a

i=1 i=1
bounded closed set. Q. E. D.

Tueoren 9.3. — For a given polytope X, the folloswing conditions
are equivalent : .

(9.31) The polytope X is locally finite.
(9.32) The simplicial universe X is locally bounded.
(9.33) The simplicial boundedness of X is open.

Proor. — (9.31) > (9.32). Let 2€X by an arbitrary point,
then there is a unique open simplex @ which conlains z. Lel S(a")
denote the open star of &, i. e. the tolality of the open simplexes
each of which contains & in its closure. Since X 1s locally finite,
S(o’) consists of a finite number of open simplexes. Hence S(¢’)is
a bounded open set containing «, and X is locally bounded.

(9.32) - (9.33). Let B be an arbitrary bounded set, then there
exist a finite number of open simplexes ¢, @,, ..., ¢ such that

7 7
Bc Ud" Hence Bc Uc‘,-. As a closed subset of a compact
i=1 .

i=1

T - —
set U o, B is compact. Since X 1s locally bounded, for cach x€ B

i=1
there is a bounded open set G, conlaining . It follows from the
compactness of B that there exist a finite number of these bounded

‘open sets, say G,, G, ..., G.,, whose union contains B. Hence

q
U G., is a bounded open selL containing B, and the simplicial
i=t
boundedness of X is open.

(9.33) > (9.31). Let & be an arbitrary open simplex of X.
Since the simplicial boundedness of X 1s open, there exists a bounded
open set G conlaining &. By definilion, there are a finite number of

q
open simplexes, say ¢,=¢, &, .... &, such that GcUs‘_,-.
. i=1

Let ¢, by an open simplex of X different from each of the sim-
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plexes &, o, ..., &s. Then &,cX—G, and the closure =, does
not meet &. Hence the open star S(&') consists of only a finite
number of open simplexes; and, therefore, X is locally finite
Q. E. D.
Tucorem 9.4. — For a locally finite polytope X, the simplicial boun-
dedness coincides with the compact boundedness.

Proor. — It is trivial that the closure of a bounded set in the
simplicial boundedness is compact. Conversely, let F be an arbi-
trary compact subset of X. For each poinl z €, let & denote the
open simplex containing x and G,= S(<’) the open star of <.
Since X 1s locally linite, G, consists of only a finite number of
simplexes. From the compactness of I, there exist a [inite number
of these open stars, say G, G,, ..., G, , whose union covers I'.
Hence F is contained in a finite number of open simplexes and the
proof is complete. Q. E. D.

Tueoren 9.5. — The simplicial boundednes of a polytope X admuts a
countable basis, (f and only if the polytope X is countable.

Proor. — Necessity. — -Suppose thal the simplicial boundedness
admits a countable basis { B,}=1B,, B,, ...|. By definition, B, is
contained in the union X, of a finite number of open simplexes..
Since {B,] 1s a basis of the simplicial boundedness, each open
simplex &' is contained in some B, and hence in X,. Therefore, there
are only a countable number of open simplexes € X.

Suffictency. — Suppose that X be countable and let &4, &,, ... be

its open simplexes.' Let X,,,:Uo‘,-, then the family {X, ] forms a
i—=1

countable basis of the simplicial boundedness. Q0. E. D.

Turorem 9.6. — For a given polytope X, the following conditions are
equivalent : ‘

(9.61) The polytope X 15 finite.

(9.62) The simplicial universe X s bounded.

(9.63) The simplicial boundedness of X has a maximal bounded set.
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“Proor. — The implications (9.61)—(9.62), (9.62)—(9.63)
are trivial. It remains to prove (9.63) »9.61). Let B, be the
maximal bounded set. By the definition of the simplicial bounded-
ness, there a finite number of open simplexes &, o, ... &, such

n

that B, C Uo",-. Since Uo‘,- is bounded and B;is the maximal

i= i=1

bounded sct, we have B, = ;. Ifthere is an open simplex € X
. P P

i=1

different from each & (i==1,2, ..., n), then B,uUs would be a
bounded set. Hence B, = X. ' ' Q. E: D.
10. MerrizasLe universes. — In a metric space X with the metric ¢,

there is a natural boundedness (called the boundedness defined by the
metric ¢) described as follows. We call a set BC X bounded if its
diameter ¢(B) 1s finite.

Devmiriox 40 .1, — 1 metric space with the boundedness defined by
s metric s called a metric universe. .| universe X (s sard to be metri-
zable if there can be introduced a metric o which defines both the topo-
logy and the boundedness of X.

Turoren 10.2. — Ecery metrizable unicerse is proper, locally bounded,
and wvith a countable basis of its boundedness.

Proor. — Let X be a metrizable universe, and p be one. of its
defining meltrics. Let B by an arbilrary bounded set. Since
2(B)==2(B), Bis bounded. IFurther, the z-neighbourhood of B is
an open sct with diameter =< 2(B)-|-2e. Hence X is proper.

Let 2 € X be an arbitrary point, then the e-neighbourhood U, 1s a
bounded open set containing #.  Hence X is locally bounded.

Choose a lixed pointz, € X. Lel G5, denote the n-neighbourhood of
x,(n=1,2,...). liremainstoprovethatthefamily G ={G,, G,,...}
form a basis of the houndedness of X defined by the metric . Let B
be an arbitrary bounded set. Choose a point x,€B, and let
d=1p(z,, @), s=0(B). Then ¢(@,, 2)~—~d-c for each z€B.,
Hence B is contained in G, if n > d + . Q. E. D.
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Let X be a metric space with meiric ¢, and M be a subset of X.
‘We use the notations :

d,(zy, M) - inl p(xy, 1), 0, (&0, M) = sup o(zy, x).
' xEeM ' xed
Derrsrrion 10.3. — Two metrics ¢,, 0, in a set X are said to be

completely equivalent, if they define the same topology and same
boundedness in X.

Tueores 10.4. — Two metrics ¢, 0, in X are completely equivalent,
if and only if the following tivo conditions are both satisfied for each
point x € X and each subset N C X :

(10.41) d, (z, M) and d, (x, M) are both zero or not
(10.42) 5, (2, M) and o, (x, M) are both finite or not.

Proor. — Since (10.41) is the necessary and sufficient condition
for¢,, ¢, to define the same topology, it remains to prove that (10.42)
is the necessary and suflicient condition for ¢,, ¢, to define the same
boundedness.

Necessity. — Suppose o, (x, M) be finite for a given pair 2 and M.
Since ¢, (M).Z22, (2, M), M is bounded. Let x,€M, then
S.(2, M) - Zou(@, )+, (M). Hencec,(x, M) is also finite.

2

Sufficiency. — Suppose M be bounded in the boundedness defined
bye,. Then,asabove, ¢, (2, M)is finite for an arbitrary point z € X.
By (10.42), 5, (x, M) is also finite. Since ¢, (M)Z23¢, (2, M),
M is also bounded in the houndedness defined by 2,. Q. E. D.

~ Derivitiox 10.5. — The euclidean n-space R* (the Hilbert space R*)
with the boundedness defined by its metric is called the euclideqn
n-universe R (the lilbert universe R™).

The following theorem 1s trivial.
Tueoren 10.6. — For the euclidean iz—-.space R", the compact

boundedness coincides svith the boundedness defined by its metric; hence
the euclidean n — universe R is boundedly compact.
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11. BounpEpnEess oF TraNsrorMaTIONS. — DErFizition 14 .1, — A trans-
Jormation [ of a univers X into a universe Y is said to be bounded, if
the image of ecery bounded set of X ts a bounded set of Y ; it is said to
be bounding, if the inverse image of every bounded setof Y is a bounded

setof X.

Derivition 41.2. — A homeomorphism h of a unicerse X onto a uni-
verse Y is said to be complete, if h is both bounded and bounding.
X and Y are said to be completely homeomorphic, if there exists a
complete homeomorphism hof X onto Y .

The notion of complete homeomorphism defined above is due to
J. W. Alexander {1]. The following statement is trivial.
g
Tucoren 11.3. — Both topology and boundedness are invartant pro-
perties under complete homeomorphisms.
Now let /" be a transformation of a universe X into topological

space Y, and denote by 33 = | B} the boundedness of X.

Dermvirion 11.4. — The boundedness in Y generated by the family
{ [ (B)} is called the image of 33, denoted by f( ).

Taeorem 41.5. — | f(B) is a basis of f( ).
Proor. — Our theorem follows from the relation
JB1UBy) = /(B1) Uf(B.).
The following theorem is trivial.
Tneorem 41.6. — f(®B) is the weakest boundedness that can be intro-
duced in Y so that [ becomes a bounded transformation.

Next let f be a transformalion of a topological space X into a uni-
verse Y, and denote by € = | C} the boudedness of Y.

, Derimion A4.7. — The boundedness in X generated by the family
{f7'(C)} is called the inverse image of C under f, denoted by f~'(C).
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Taeorem 11.8. — { /=" (&) | is a basis of f~'(C).
Proor. — Our theorem follows from the relation
STHCU G = /(G u S (Gy).
The following theorem is trivial.
Tureorem 11.9. — f=*(C) s the sweakest boundedness that can be
introduced in X so that [ becomes a bounding trans formation. Further,

if fis amapping, then f~'(C) s closed, open, or proper, according as C
15 closed, open, or proper.

12. Revamivization or sounpeEpness. — Let X be a universe with
boundedness 3 ={B |, and X, be a subspace of X provided with the
topology obtained by relativization.

Turoreyn 12.1. — The family of subsets | BNX, | &s a boundedness
in X, which will be called the boundedness &, relative to @3. ) '

Proor. — Lel B,, B, € @, then we have
(BN )uB.nN)=(B.aB) N\,

Hence | BnX¥} satisfies (1.12). Let C be a subset of BNX,
then Ced. It follows that C=CnX, is a bounded setof [ BN X, !.
Hence | BN X, | satisfies (1.11). Q. E. D.

Dervirioxy 12.2. — The subspace X, C X with the boundedness 3
relative to 43 is called the subuniverse X,.

X

I'neorey 42.3. — .1 subuniverse X, of a closed, open, or proper uni-
verse X s closed, open, or proper.

Proor. — Suppose X be a closed (open) universe. Let B be an
arbitrary bounded set of X, then there exists a bounded closed set I
(a bounded open set () which contains B. By relativization,
FnX, is a bounded closed set (GN X, is a bounded open set) of the
subuniverse X, which contains BN X,. Hence X, 1s a closed (open)
universe. Q. E. D.
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Tueorem 12.4. — If a point x€ X,C X is a finite point of the uni-
verse X, then x is also a finite point of the subuniverse X,; hence a
subuniverse X, of a locally bounded universe X is locally bounded.

Proor. — Since « is a finite point of X, there is a bounded open
set G of X which contains . Then G X, is a bounded open set of
X, containing x, hence « 1s a finite of X,. Q. E. D.

Toeorem 12.5. — If @ = Al &5 a basis of the boundedness 3 of a
universe X, then the family & -—= | ANX, | is a basts of the boundedness
@ in X, relative to (.

Proor. — Let BNX, be an arbitrary bounded set X,. Since
@ is a basis of @3, there is a set A €@ which contains B. Hence
BnX,cAnX,, and {ANX, | is abasis of @3,. Q. E. D.

CoroLrary 12.6. — [/ the boundedness G of a universe X admuts a
countable ( finite) basts, so does the boundedness &, of ecery subuniverse

X, of X.

Tueoren 12.7. — The ddentity mapping of a subuniverse X, of a
universe X tnto \ ts both bounded and bounding.

Proor. — Let B, be an arbitrary bounded set of X, ; then bysthe
definition of 3, there is a bounded set B of X such that B,=BnX,,
Hence B, ¢ B is also a bounded sct of X, i. e. the identity mapping is
bounded. Conversely, let Mc X, be a bounded set of X; then
Mn X, is also a bounded set of X,. Hence the idenlity mapping is
bounding. Q. E. D.

Hereafter, the subspaces L, W, A, Q of a universe X will be provi-
ded with the boundedness obtained by relativization; and, therefore,
they are subuniverses of X.

Tucorem 12. 8. — e kernel A of a universe X is the greatest locally
bounded subuniverse of X which is an open set of X.

Proor. — Let x €A, then there is a bounded open set G of X
Journ. de Math., tome XXVIII. — Fasc. 4, 194g. 39
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which contains . Then GN A is a bounded open set of A contai-
ning @; hence A is locally bounded. A 1s an open set of X by (6.4).

On the other hand, let an open set X, of X be a locally bounded
subuniverse of X. Let @ be an arbitrary point of X,. Since X, is
locally bounded, there exists a bounded open set G of X, which
contains @. Then G is also a bounded set of X. Since X, is an
open set of X, G is also an open set of X. Hence 2 is a finite point
of X, and X, CA. Q. E. D.

Turorem 12.9. — The kernel A of an open universe X is the greatest
locally bounded subuniverse of \.

Proor. — By (12.8), A is a locally ‘bounded subuniverse of X.
On the other hand, let X, be a locally bounded subuniverse of X and
let z€X,. Then « is a bounded point of X, and therefore a
bounded point of X. Since X is an open universe, x is a finile point.
Hence X, CA. Q. E.°D.

13. Merrizarion. — Dermirion 15.1. — .1 characteristic function
of auniverse X is a real-valued continuous function Y > o defined over X
in such a way that a subset M of X is bounded if and only if the least
upper bound of b over M is finite. -

Treorem 13.2. — .| normal unicerse X admuts a characteristic
Junction b, if and only if X is proper, locally bounded, and with a
countable basis of its boundedness.

Proor. — Necessity. — Suppose X be a universe which admits a
characteristic function ¢. Let z€X and {(z)=y. Choose b>y,
and denote by B, the subset of X which consists of the totality of the
points £€ X for which U(£)<b. From the continuily of ¢, it follows
that B, is an open set. By the condition of a characteristic [unction,
B, is bounded. Since z€ B, X is locally bounded.

Next let B be an arbitrary bounded set, choose 4 so that

b > sup ,.enP ().
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Then B, is a bounded open set and B, is a bounded closed set both
containing B. Hence X is proper.

Now let B, denote the subset of X which consists of the lolality of
the points £€X for which (8)<n (n=1, 2, ...). Then{B,}is’
an increasing sequence of bounded open sets. Let B be an arbi-
trary bounded set, and choose a positive integer n > sup, b (2).
Then BcB,. " Hence { B,} forms a countable basis of the boundedness

of X.

Sufficiency. — Suppose X be a normal universe satisfying the
condition of the theorem. If X is bounded, then U(x)=o0 is a
characteristic function of X. Herealter, we assume X to be non-
bounded. Since X is locally bounded, X cannot have a maximal
bounded set. It follows from (5.6) that the boundedness of X has a
basis ¢ which consists of a sirictly increasing sequence of bounded
open sets Gy, Gy, ..., (5, ... such that G, is contained in G, for
eachn=—1,2, ....

Since G, and X — G,,, are disjoint closed sets of a normal space,
it follows from Urysohn’s lemma that there exists a conlinuous
function ¢, defined over X such that : ,(z)=n—1, if z€ G
Now define ¢ by taking {(z) =1, (2)if z€G,,, — G,. Itremains
to prove Lthat { 1s a characteristic function of X.

The continuity of ¢ follows [rom the fact that 4, ,(z)=n—1=1{,()
for each ze G,—G,. Now let M be an arbitrary set of X. If M
is a bounded set, then there is a sel (., containing M; hence
U(x). “n for each z&M. Conversely, suppose that sup g (z) is
finite. Choose n so large that {(@)< n for each z&€M; then we

have M c (., and M 1is hounded. Q. E. D.
Let R* be the Hilbert space with coordinates system y, y4, ¥a, - - .,
Yu ... Let Il denote the half-line defined by y,>o0 and

yo=o(n=1,2, ...); and I*, the Hilbert cube defined by y,=o
and o<y, < ;l;(n =1, 2, ...). Weshall denote by H® the single-

winged Hilbert cube defined by y, ~o and oféy”;j:%(n: 1,2 ...
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Tueorem 13. 3. — A necessary and sufjicient condition fora universe X
to be completely homeomorvhic wvith a subset of the Hilbert unicerse R
is that be normal, proper, locally bounded, with a countable base of its
topology and a countable basis of its boundedness.

Proor. — The necessity follows immediately from Urysohn’s
imbedding theorem and (40.2). It remains to prove the sufficiency.

By Urysohn’s imbedding theorem, there exists a homeomor-
phism % of the space X onto a subset of the Hilbert cube I”. Let
J, (@) (n=1, 2, ...) denole the »" coordinate of ~A(x)€l”. By
(15.2) there is a characteristic funclion ¢, defined over X. Now
let ¥ be the mapping of X into the single-winged Hilbert cube H®,
defined by

V@) =do(x), Uil2), Gu(@), ..., ula), ... (zeX)

Clearly ¢ is a homeomorphism of X onto a subset of H”. NexLlet B
be an arbitrary bounded set of X by (15.1) there exists a positive
number 4 such that ¢,(x)€b for each = B. Therefore the
image ¢(B) is conlained in the bounded set <o, b > ><I* of the
Hilbert universe R*. Hence ¢ is bounded. On the other hand, let
A c H" be an arbitrary bounded set, then there is a positive numberc
such that the o" coordinate y, of cvery poinl y€A 1is less than c.
Now let B, denote the subset of X which consists of the totality of
the points x € X such that ¢ D(x)x c. By (15.1) B, is a bounded
set of X. Since the inverse image {~'(A) is contained in B, it is
bounded. - Hence ¢ is boundeding. Q. E. D.

Tucorex 15.4. — .1 separable metrizable universe X oy dimension n
is completely homeomorphic sith a subset of the euclidien universe R*"+2.

Proor. — The proofl is almost exactly the same as that of (13.3),
by using Menger-Noebeling theorem [4, p. 60| instead of Urysohn’s
imbedding theorem.

Tueorem 45.5. — I/ X be a proper universe svith a countable basts of
its boundedness and if the kernel A be a separable metrizable space, then
a metric o can be introduced in \ in such a way that :
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(15.51) a subset M C A is bounded, if and only i/ the diameter c(M)
is finite;

(15.52) for each pair of points x, € \,x,€ A — A and each positice
number b, there exists an open set Gz, such that o(x,, ) for
eachxreGNA.

Proor. — Since X is proper, the subuniverse A is also proper
by (12.3). By (12.9) Ais locally bounded. By (12.6) A admits
a countable basis of its boundedness. Hence it follows from (15.3)
that there exists a complete homeomorphism ¢ of A onto a subset of
the Iilberl universe R”. Let a metric ¢ be defined over A by means
of g(@y, @.) = p[U(y), b(,)] for each pair @y, @, of A.  Since { is
a complete homeomorphism, (15.51) is satisfied.

To prove (15.52), letx, €\, x, € A—A,and b > o be arbitrarily
given. Let B denote the sel of points & of A such that s(z,, )0,
then A is a bounded closed set of A. Since A is proper, there is a
bounded open set U of A which contains B.  Since A is itself an open

set of X, U is a bounded open set of X. Since X is proper U is a
bounded closed set of X and UcAby (6.5). Hence the open set

G = X — U contains 2, and G A is contained in A — B. Therefore,
it follows thas o(a&,, ) > b for each z€ N\ and (15.52) is proved.
' ' Q. E. D.

14. CoONNECTIVITY THEORY OF UNIVERSES. — The Cech theory of homo-
logy and cohomology groups of a universe can be naturally defined,
a sketch of which is the object of the present paragraph.

Let X be an arbitrary universe, and @3 =B { be the boundedness
of X.  Throughout the present par agraph, a finile open covering of
X will be blmply called a covering.

Let o=y, ay, ..., a; | be an arbitrary covering of X, and let N,
denote the nerve of a. A vertex «;€N, is said to be special, if the
open set a; €« 1s not bounded; a simplex @ € N, is said to be special,
if all of its vertices are special. The special simplexes of N, consti-
tute a closed subcomplex M,, called the special subcomplex of N,.

A Covcring B=1{by, by, ..., by} is said to be a refinement of the
covering « (denoted by a<§3),1f each b; € 31s contained in some a; € a.
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Let X be the sel of all covering of X, partially ordered by the rela-
tion « < @. X is a direct set since any two coverings « and (3 have a
common refinement, obtained by mutual intersections of the elements
of o with those of §.

Suppose « <. Letl us select for each member of 3 a member of
o containing it. This gives a simplicial mapping ®g, of Ng into N,
which is called a projection of Ng into N,. It is trivial that
®g,(Mg)cM,. Ior any two projections ®g, and g, of Nginto N,
it is easily seen that for each simplex o€ Ny the simplexes ®y,(3)
and g, (o) are faces of some simplex t€ N, and that 7 can be selected
from M, if g€Mgy. Turther, if « <3<y and ®g,, .5 are projec-
tions, ®g, .4 is a projection of N, into N,,.

FFor a given commutative coefficient group G, let us denote by

1, (o) = 11,(N, mod M, G),
1~ () = 117 (N, mod My, G),

the ™ homology and the »" cohomology groups of N, modulo M,
|4, p- 116].  The projections ®g, of Ng into N, induce unique homo-
morphisms

©gs 0 Ha(B) > Ha(a),

Tg t Hr(a) —17(B),

further, if o < 3 <y, the following relations hold :

mpme{g: w.{,x, 7:(3.(7?1?,: Ty

i

This shows that for any integer n and coefficient group G,
{H,(2), €X} is an inverse system of groups with homomorphisms
@y, and {H"(a), «€X}is a direct system of groups with homo-
morphisms 73.

Derivition 44 .1, — Let X be a universe, G a commutative group, n a
non-negative integer, and %=/{a the collection of all the coverings
oy X.  The limit group of the inverse system {H, (o), a €2} is defined
to be the n™ homology group H,(X, G) of the universe X with coefficient
group G.  The limit group of the direct system {H"(a), o € X |is defined
to be the n cohomology group H"(X, () of the universe X with coeffi-
cient group G. ’
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If X is a compactum and with the trivial boundedness, then our
definition reduces to the usual Cech theory [4, p. 135]. If Xis locally
compact, with the compact boundedness, and homeomorphic to an
open set of some normal space, then the above definition reduces to
the definition given by P. Alexandroff [2, p. 82].

Tueorem 14.2. — Let G be a discrete group and G* its compact
character group; then for each universe X and each integer n>-.o,

IL,(X, G*) is the character group of H'(X, ().

Proor. — Ifor each a € X, the compact homology group H,(«, G*)
is the character group of the discrete cohomology group H"(«, G)
[2, p..53]. Further, il can be casily seen that the homomorphisms
®g, and 7,3 are dual Lo each other; hence our theorem follows from a
statement of [ 4, p. 134 | ’ Q. E. D.

Tueorem 14.3. — Let X be a proper universe and A be its kernel, then
Jor each coefficient group (z and each integer n>o the folloswing homo-
morphisms hold : :

(14.31) ,(X, G) ~ TL(A, G),
(1%.32) _ (X, G) ~ 17 (A, G).
Prorr. — The argument given below is an analoque of that used

by P. Alexandroff |2, p. 87| in his proof of the Kolmogoroff duality
theorem.

Let a=\a,, ..., a,, apoy, ..., t,, a4, a.} be a covering of X,
where ay=1{a,, ..., a,| denotes all the bounded elements of « and
a,={a, ..., a,{denoles all the elements of « which are contained

»

in A.  Let Q, denote the bounded closed set U a;. The covering o
i=1

is said to de regular, if (1) every element of « which meets Q, belongs

to a,, and (2) a, is a covering of .\.

The regular cocerings form a cofinal subset R of the set of all cove-
rings of X. Indeed, let « be an arbitrary covering of X. Denote all
the non-void sets of theform A na;, a;€aby 3, =10, ...,04, 01015 ...,b;}
where 3,=1{0,, ..., b, | are the bounded elements. J_ is evidently
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h

i=1

(i=1,2, ..., r—q); then the covering
;’3 = : by ooy by bpcty ooy bpy bpy,y bk+r——l/;
is a refinement of «.  Since Q3= P, B is regular.

For every covering c==\d,, ....d;| of \ there is a regular covering
a of X with o,— [n fact, let ¢,={d,, ..., d,| denote the
n

N

G
N
o.

bounded elements of ¢ and let I’ = U d;. The covering « consisting
i=1
of all the elements of 2 and the X\ — P is a required one.

Any o regular coserings o and 3 of X have a common refinement v .
such that v, is a common refinement of «, and §3,. In fact, let ¢ be a
regular covering which is a common refinement of « and 5. Denote
all the non-void sets of the form a;Nb;Nd, where a;€0,, 0,€B,,
d €2, by Y,=1{C/, -1 Cos Cousys o5 €}, Where yo=1c,, ..., Cn}

mn

denotes the bounded elements. Let P denote the set UZ"’ and let
i=1

Custs - - -, s denole all the sets of the form d;— P, where d;€¢ — 3,

The covering

— i . . . .
VY =1C -5 Cny Cmity ««vy Cny Oty ooy Os

is a required one. ,

In the set IR of all regular coverings of X, we define a partial order
by the statement : 2 < if (1)  is a refinement of « and (2) (3, is a
refinement of . _ It follows from the foregoing preliminary conside-
rations that H,(X, G) & rsomorphic svith the limit group of the inverse
system {H,(N,modM,, G), a€ R} aith ws, as the homomorphisms
and that I"(X, G) i isomorphic with the limit group of the direct
system { H'(N,modM,, G) a€ R | with .3 as the homomorphisms.

Now let 2 €R, then o, is a covering of A\. Let N,, N, denote the
nerves of «, o ; and let M,, M, denote the special subcomplexes
of N,, N,.. Since each vertex of N, is a vertex of N,, it follows
that N, ¢ N,. Since for a proper universe X the bounded sets of X
coincide with those of A, it follows that M, c M,.

N,—M,=N, —M, for cach 2€R. In fact, let seN,—M,;
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then ¢ has a bounded set a; of X as one of its vertices. It follows
from the regularity of o that all the vertices of & belong to «,,
i. e. @€N,. Since «; is also a bounded set of A, €N, —M,,.
Conservely, suppose €N, — M, ; then & has at leasl one vertex «;
which is a bounded set of A and hence a bounded set of X. There-
fore, #eN,— M,. -

Since N,— M, =N, — M, then the identity mapping N, - N,
inducesisomorphisms ¢, of 1,(N,, modM, , G)onto H,(N, mod M,, )
and ¢, of H*(N, modM,G) onto I"(N, modM,, G). Iurther, the
following relations can be verified.

08,0, = WE29 By LETap = 73,0, Vs

for each pair «, B&€R with « < f. »
Let S denote the set of all covering of A. We have proved thal
the limit groups of the two inverse systems '

{ Ho(Ng mod My, G), ae R}, { H,,(Ng, mod M, G), «, €S}
are isomorphic and the limit groups of the two direcl systems
(11"(N, modM,, G), x€R}, | 1I"(Ny mod)Ms, G), z,€S]

are isomorphic. This completes the proof. Q. E. D.

By the aid of (14.3), the connectivity theory of a proper universe
reduces lo that of a locally bounded proper universe. It happens
to me that the whole theory of homology and cohomology of a topo-
logical space can be re-constructed in a more desirable form for a
proper universe. Ifor instance, we shall formulate a generalization
of the Kolmogoroff duality theorem as follows. ’

Dervition 14.4. — The weak relative boundedness in a subset X,
of a universe X consists of the totality of the bounded sets B of X
with B C X,

In particular, if X_ is a closed subset of X, then the weak relative
boundedness coincides with the relative boundedness defined in para-
graph 12.  The following generalized Kolmogoroff duality theorem
can be proved by the method of I’. Alexandroll' [2] with some trivial
modilications.
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Taeorem 14.5. — Suppose X be a locally bounded proper normal
universe, X, a closed subsetof X and X, the open complement X — X,
both with the wealk relatice boundedness. Then for each coefficient
group G and each integer n>>o0, H'(X, G)=0=H"(X, G)
implies H'(X,, G) ~ H*+' (X, G).

In particular, if X is a locally compact normal topological space,
then (14.5) reduces to Alexandroff’s formulation of the Kolmogoroff

duality theorem [2, p. 86] by giving X the compact boundedness;
for, in this case, the weak relative boundedness in X, and in X, coin-

cide with compact boundedness.
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