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Bounderlness ù1, a topological SJ!ace; 

lh SZE-TS.EN HU (1). 

ln 1939, J. ·vv. Alexander [L JC) inlroduced the notion of boundcd-
ness inlo the realm of general topolog·y. lt is a contribution of real 
importance, for it opens a vas rcgion of investigation which is 
so far foreign to lopology. llowevcr, this promising Nole of 
J. "\V. Alexander bas been completcly neglected during the last seven 
years since ils publication. A possible reason of its being neglected 
might be that boundedncss is not a Lopolog·ical invariant. But, not 
all propcrlies studied in lopology are invariants under homeomor-
phisms; uniformit.y is an outslauding example. 

The object of the presenl ,,,ork. is to give a detailed axiomatic 
approach of boundedness in general Lopology and its consequences. 
The original definition of J. vV. Alexander yields an unsatisfactory 
result that every non-bounded point of the space must be an isolated 
point a fact which docs not agree with the usual notion of geometry, 
as for example, the points al infinity of a projective plane form a line 
at infinity but not a set of isolated points. Iristead of combining 
boundcdness within the definition of a topological space as 
J. \,Y. Alexander did, we consider a topological space given a priori 
and introduce a boundedness by picking up a family of subsets, 
called bounded sets. Thus the lopology of a space is independent 

(1) Tite aulhor acknowledgcs his gralitude to Professor l\L li. A. Newman 
and Mr. Shaun \Vylie for their helpful and inspiring crilicisms. 

(") Numbers in brackels denote references in the bibliography al the end of 
the paper. _ ):/·- :;1~~\ • 
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of the bouudedne:;,; introduced, and the latter is rather a super-
structure builL upon the g·iven space. 

With regard to topological spaces, no separalion axiom is assurned 
unless explicitly sLaded. Following N. Bourbaki, we shall denote 
by 0 Lhc cmpty set, by M and ~I rcspectively the closure and the 
interior of the set M. Following S. LeLchetz, continuous transforma-
tions will be called mappz'ngs. 

1 Boui'iDEDNLiSS AND t:NIVERSES. - DEFINITION t. 1. - A boundedness in 
a topologfral Jpace X is a non-m/d f anuly of subsets i B \ of X, called 
the bounded sets of X, satisjyz·ng : 

('l .11) ecery subset of a bounded set is bounded; 
(1. 12) the union of a finite number of bounded sets is bounded. 

Frorn ( 1 . 1 1) il follows irnmediatel y that 

(1 .13) 0 is bounded; 
(1. 14) the intersection of a non-vozd collection of bounded sets is 

bounded. 

DEFINITION 1. 2. - _ I unzverse zs a topological space with a gwen 
boundedness. 

DEFINITION '.I . 3. - A wu(·erse X is saùi to be bounded, zj the whole 
space X is a bounded set and hence eve,y set ù bounded. 

The following theorem is trivial. 

TuEOREl\l 1. 4. - fi a unùerse X with a boundedness i B ) is not 
bounded, then the famz1y j X- B) of the complementary sets X- B, 
B E \ B l, has the f olloiving propertz'es : 

(1. 41) none u f the sels X -13 is bounded; 
(1.42) ( X- B \ form ajilter [:~ 1 p. 20J, called the fllter at injinity 

o/the universe X. 
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2. CALCULUS OF B0U:'lDED:'lESs. - Since a boundedness in a space Xis 
but a family of subsets, the calcul us of boundedness in a given space X 
can be naturally introduced by the analogue of the calcul us of sets. 
Throughout this paper, German capitals are only used to denote 
families of subsets, e. g. boundedness, coverings, filters, etc ... 

DEFINITION 2. 1. - Given tivo boundedness CL and 63 in a gwen 
topological space X, we say thàt CL ù stronger than C?, and 63 is weaker 
than ~, zf CL ::> <B. 

It is clear Lhat the system of all the boundedness in X is properly 
ordered by ::>, [7, p. 3]. The weakest boundcdness is that which 
consists only one member, i. e. the only bounded set is 0; the 
strongest is the one in which Xïtself is a bounded set and hence every 
set is bounded. 

THEOREM 2. 2. - Gz·ven an arbitrmy family tL =\A; of subsets of a 
topologz'cal space X, there exists a f·veakest boundedness 63 = \ B l in X 
containing et., ivhich \"f,'Zll be called the houndedness generated by et.. 

PROOF. - Let 63 = \ B j denote the family of subsets of X which 
consists of the totality of the :rnbsets of the finite unions of the 
famility et.. It is easily seen that cî3 eontains CL and is a boundedness. 

On the other hand, let. e be an arbitrary boundedness ,vhich 
contains the family et.. By (1.12), e contains every finite union 
of c't; Lhen by (1. H), e contains (13. Hence e is stronger than 63, 
and our theorem is proved Q. E. D. 

DEFINITI0:.-1 2. :L - Given a system, œ,i of boundedness z·n a topological 
space X. indexed by a set I, [5, p. 3], the tivo boundedness generated 
by the u,âon u (Î3; and by the Ùltersection n (Î:>; are· re.1pectively 

iEI ;El 

called the joz·n V 63; and the meet A LÎ:>; of the gù;en system of boun-
tei ;El 

dedness 63i, z· E 1. 

'f () /. A ,a - n h HE0REM ..,. . ~J. - vv1 - (1, i• 

iEI iEI 
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PROOL'. - It is enough to prove that the intersection n œ, is a 
IEI 

boundedness. Let B E {) Œ;, then B E o1; for each i e I; hence 
, iEI 

by (1 .11 ), every subset of B belongs to each d3;, i E 1. Therefore, 
{) tî3; satisfies (1.1 t). Similarly, {) Œ; also statisfies ('I . '12). 
iEI iEI 

T1moREM 2.5. - The join V lî3; consists of all the .rnbsets of X 
iEI 

whz"ch are of the form U 13;, where B; E lî3; for each i E l and at 
iEI 

most a .fznàe nwnber of the B; are dijferent from the empty set O. 

PROOF. - Let 13 be a set of the form described in the theorem, 
then B is a finile union of the family U Œ;. Hence we have 

iEI 

BE V Cî3;, 
IEI 

. Conversely, suppose A be an arbitrary set of the boundedness 
V Cî3;, then A is by definition a subset of a finite union of U cî3;. 
iEI iEI 

Since each B; satisfies (1.11 ), A itself is a fini te union of U Œ;. 
IEI 

Suppose A= A, U A2 U ... UA,;, whcre A1, A 2 , ••• , A'l are 
members of U œi. For each Alp= 1, 2, ... , q ), we choose 

Ï/J i iEI 

the described form. 

T11EORE~r 2. 6. - The boundedne.1·s Lî31 V Cî32 V ... V cî3g consists of 
all tlle subsels of X niâch are of the fo,m Bi U B2 U, .. U Bq, 
1vhereBpE Cî3p(p=1, 2, ... ,q). The boundednesscî3d\Œ2A, .. A63g 
consists of (l!l the subsets of X ivlu'ch are of the form B1 () B2 () ..• () Bq, 
where BPe o?Jp(p = 1, 2, ... , q). 

PRoOF. - This theorem is an immediate consequence of ( 2. 5) 
and (2.4). 
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TuEOREM 2. 7. - The system of all boundedness zn a topologz"cal 
spnce X is dù·ected bath by :> and by C [7, p. I o]. 

PnooF. - For an arbitrary pair of boundedness L't and@ in X, the 
join t1, V LJ'?J is stronger than both of them and the meet l't A cJ3 is 
weaker than both of them. 

5. THE CLOS URE \~[) THE INTERIOII. OF A Il0U~DEDNESS. DEFINITION 5. i. -
Given a boundedness i:' = (Bi in a topologfral space X, the boundedness 
(Î:J generated by the f anu'ly i l3 \ is called the closu_re of cî3 and the 
boundedness C/3 generated by the family. j B ! ù called the inten·or of ci?,. 

The following two theorems are_ trivial. 

T1rnORE11 5. 2. - For an arbitrmy boundedness ci?, in a topological 
space X, n,e always ha,,e (f;, C Cl?, C Ll?i. 

TnEOREM 5. :L - For any two boundednes.5 CL and cl?, ùi a topologl·cal 
H)(/Ce X, tl:, (i?, implt'es et :)-(l;, and tt:, (i?,. 

DEFfülTION 5.4. - A boundedness 03 is said ta by closedlfli3=@, 
open ~l LG = ci?,, and proper if à is both closed and open. A universe X 
ù saùi to be closed, open, or prope,·, according as ùs boundedness ù 
closed, open, or proper re:,,pectz"vely. 

TnEOREM 5.r>. - For a gù·en bouwledness li3 in a topological space X, 
the followl·ng condùions are equz"rnlent: 

( 5. ,j 1) 03 is closed; 
( 5. 52) li3 is generated by ils subfamily of the bounded closed sets; 
( 5. 53) the closure of eve1:y bounded set is a bounded set. 

PnoOI•'· - c:..G1)-+(3.G2). Since (Î:, is closed,@=(Î:,j there-
fore, j B j C ci?,. On the othcr band, if B is a bounded 'closed set, 
then B =HE l B ;. Hence j Bi is the subfamily of the bounded 
closed sets, and ci?,= LB is gencrated by j B l-

(3. 52) ->- ( 3. i:i3). Let B be an arbitrary bounded set of LJ'?J. 
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Since 03 is generated by its subfamily ( F l of the bounded closed sets, 
B is a subset of a firiiLe union of bounded closed sets. Hence there 
exists a bounded closed set F such thàt B CF. It follows that the 
closure B CF is a bounded sel. 

( 5. 53) ~-;,- ( .3. 51 ). Sin ce If E 63 for each BE ci?>, we oh tain 03 C cî?o. 
By(.3.2), cJ3::,ci3; hence Ci3=lB. Q. E. n. 

Remark. - It is easy to see that the boundcdness originally introduced 
by .f. ,v. Alexander is a special case of closed boundedness. 

TrmoREM 5. G. - For a given boundedness Li3 in a topologl·cal space X, 
. the jollowing condùions are equfralent: 

( 5. 61) ci3 is open: 
( 5. 62) cf?, ù generated by its subfamdy of the bounded open sets; 
( 5. G:3) e,·e,y bounded set ù contaù1ed in the interior of some bounded 

set. 

PROOF. - (5.Gl) ->-(5.G2). IL is clear that j 13 lis the subfamily 
of the bounded open sels of (i3. Sin ce (i?, is open, 6'.J = 63; hence 03 is 
generatecl by \ 13 l-

(5. 62)-+ (5 .63). Let B be an arbitrary bounded set of 03. 
Since 63 is generated by its subfamily l G l of the bounded open sets, 
B is a subset of a finitc union of bounded open sets. Hence there 
exists a bounded open set G such thal BCG. Hence (5. 63 ). 

( 5. 63) ( 5. 6 J ). Sin ce every bounded set is contained in the 
interior of some bounded set, then 6'.J C 03. By ( 5. 2 ), 6'.J C 03; hence 
Ô3= 63 and Lb is open. 

Combining ( 5. 5) and ( 5. G ), we obtain the following theorem 
concerning proper boundedness. 

T1moREM 5. 7. - For a giçetz boundedness Ci3 in a topological space X, 
the .followùzg conditions are equivalent : 

( 5. 71) L13 is proper; 
( .3. 72) œ, ù generated both by its subfamily of the bounded closed 

sets and by ùs subfamz'{y of the bounded open 'sets; 
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( 5. 73) the closure of e1•e1y bowided .l'(~l ù conta,"ned ,·n the interior 
of some bounded set: 

T1rnoRE~1 5. 8. - G/1•en a non-rnùl .farruly : A\ (~l c{osed (open) sets 
r~l a topolog~·cal space X, .i·ati.1/yinp, : 

(5. 81) every closed (open) subset of a set A of [Al 1J· a set ~li A j; 
(7.. 82) eFe1yfinàe 1m/on of (A) belongs to 1 A\, 

then t!tere exùts a un/que closed (open) bozmdedness ,·n X wùh j Al as 
t!te famdy r~l the bo1mded closcd (open) sets. 

PROOL - Let us provc the thcorem for closed sets (A\. We 
define a boundedness in X by calling a subsct Il of X to be a bounded 
set, if the clos ure 13 E (A\. Then it is easily verificd that 03 = i Blis 
the closed boundedness generaled hy the family \A\. Now let B he 
an arbitrary bounded closed set of œ,, then D = TI E j A\. Conver-
sely, every set A E; Al is a bounded closed set of 03. Hence (Al is 
the family of the bonnded closed sels of (0. The uniqucness of 03 
follows from the fact that every closed bouudedness is generated by 
its family of the bounded closed sets. Q. E. o. 

THFOREM 5. 9. - Gù·en a famdy 1 F) of closed sets and a family i G l 
of open sets of a topological space X, statùfyz·ng: 

(5. 91) ( Fl and 1 G l both sat1·.~fy ( 5. 81) and ~5 .82); 
(5. 92) for each Fe [ F \, there exùts a set GrE [ G l ~ùh Gr:> F, 
( 5. 93) / or each GE ( G j, there exists a set F G E j F l vPith F G ::> G, 

then there exùts a unique proper boundedness z"n X ,vùh \ F l and \Glas 
its famz·li·es of bounded cloSPd sets and of bounded open sets respectively. 
Conversely, the /amihes of bounded closed sets and of bounded open 
sets ~fan arbùrmy proper boundcdness i'n X satz~fy ( 5. 91.) ( 5. 93 ). 

PROOF. - The second part of the theorem follows from ( 1. ,J 1 ), 
(1.12), and ( :5. 73). It remains to prove the first part of the theo,rem. 

Let c:1. be the closed boundcdncss gcnerated by j F l, and 03 be the 
open bounded ness g;enerated by ( G \, as arc describcd in ( :'i. 8 ). For. 
an arbitrary A E c1., there is a set Fel F l such that AC F. B y (5. 92), 
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there exists a set Gv E ( G: such Lhat G1. ::> F ::>A; hence A E 03, 
and l'tC03. Similarly, we cdn provc) that tt::>o3. Therefore, ét.=Cl3 
is a proper bo undedness in X; and \ F j, \ G l are the families of the 
bounded closed sets and of the bounded open sets by (5. 8). 

Q. E. D. 

It will be seen in § '17' that the proper boundedness is the most 
important one. However ,ve shall give two examples to show the 
existence of non-proper boundedness. 

Example (J ). - A boundedness wlu'c/1 ù open but not closed. LeL X 
be a Hausdorff space, and x be a non-isolated point of X. Define a 
boundedness in X by calling a subset D of X to be bounded if B does 
not con tain x. The conditions U . 1 J) and (l . 12) are trivial. The 
boundedness 6?, =\Blis open, for each bounded sel B is contained 
in the bounded open set X - x. Since xis not isolated, the closure 
X - x of the hounded set X - x is the space X which is not hounded 
hy our definilion. Bence 03 is not close cl. 

Example ( 1) (:l). - "I boundedness n-hich z"s closed but not open. 
In the Hilbert spacè R''', let Xn( n = 1, 2, ... ) denote the closed 
interval on the Xn-axis detined by o /. x 11 L r anl' X;= o ( i n ). 
Let X denote the union U ,7=, X11 • Define a boundedness in X by 
calling a subset l3 of X to be bounded if the closure D of l3 in X is 
compact. The conditions ('1 . J J) , and (t .12) are trivial. The 
houndedness (î?, =: ll j is closed, for the c]osure B of a bounded set B 
is by definition bounded. That œ, is noL open will be proved as 
follows. Since X 1 is compact, it is bounded. It Lî?i is open, then 
there exists a bounded open set G \vhich con Lains X1 • Since X1 is 
compact, G may be assumed to be an E-neighbourhood of X1 in X for 
a sufficiently small E > o. From our definiLion of the boundedness 
it follows that G should be compact. Let y" denote the point o(X" 
with Xn= E.; tl1en y,, E G for each n = I, 2, . . . . The sequence ;y 11 l · 
has no clusler point, which is a conlracliction to the compactness 
of G. 

(') The author is grateful to Dr. A. J. \Va rd for this example. 
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4. TnE BASES OF A BOU:"lDEDNESS. - DEFINITION 4. J. - .1 subfamdy 
t1, = 1 A 1 of bounded sets of a _L:·ù·cn boundedness (i:, = [ B l in a topolo-
gical spacc X ,·s called a basù of (i:,, ,f cve,y bounded set BE J."'' is a 
subsct of some A E t""t. t""t ù called a closed (open) basis of (6, 7:/ each 
set A E t""t l!i closed (open). 

LL follows from ( 5. (i) and ( :i. 7) that the family of boundcd closed 
( open) sets of a closed ( open) boundedness ci3 forms a closed (open) 
basis of' 03. 

TnEORE:\t 4. 2. - A famity c:l = (Al o/ .mbsels of a topolog/cal 
.rpace X/sa basù o/ some boundedness ùi X, tf and only lf the zmfrm 
(~/ any two sets of t""t is contaùzed z'n a set of d. 

PnooF. - Necessùy. - Suppose e Lo by a basis of a boundedness 
(6 in X, thcn c:l C (6. Let A 1 , A. 2 be two arbitrary sels of l't. 
By ('I .12), A 1 U A2 E ci3. Since tt is a basis of (6, A1 U A2 1s a 
subsel of a set A E tl. 

Sz~fjiclàu;y. - Suppose the condition be satisfied, and let 03 be the 
boundcdness generaled hy tt. Since the union of any tvvo sets of l'l 
is contained in a set 01· a, then the union of any finiLe number of sets 
of t""t is con tained in a set of t""t. Therefore, every set of Ci3 is a subsct 
of some sel of t""t; and hence et is a basis of 03. Q. E. n. 

TnEOHEM 4 .. :L - U the /Joundednessci?, l·n X /s generated by tl, tlœn 
the .finùe 1mùms r~/ tl /orm a lwsù of LB. 

PnooF. - Let c:1.:* be the farnily of fini te unions of L'l, then tl * 
generales ci3. Sin ce t""t* satis fies Lhe condition in ( 4. 2), t""t* 1s a 
basis of ci?,. Q. E. o. 

T11Eo1\EM 4. ·1L - In a g/cen topolo,t;ical .1pace X, a necessary and 
.\ï~fficz'enl condition for the boundedness u3* n1ith a baS1s t1. * Lo be stron-
gcr than the boundedness (6 wùh a basù L'l is that each set A E L'l /s 
contaùied i'n a set A* E t""t *. 

P,woF. - Necenùy. - Suppose O?,*::, li3, and let A be an arbytrary 
Journ. de Màth., tome XXVII!. - Fasc. ft, r~4\l• 37 
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set of cl.,. Then we have A E œ,*. Since c:l., * is a basis of œ,*, A is 
contained in a set A* E t'l*. 

Su.fficiency. - Let B be an arhitrary set of cB. Since et. is a basis 
of LB, B is contained in a set A E tt.. By our condition, Ais contained 
in a set A*ec:l*. I-Ience LBBeœi* and (i?i*:HB. Q. E. o. 

DEFINITION 4. i'>. - . L .f am/(y tt. = l A: of subsets of a topological 
space X ù called a basis of boundedness, 1.f à is a basù of some boun-
dedness in X. T1vo bases of boundedness are sm"d to be equiMlent, lf 
tlzey are the bases of the same boundedness. 

The following theorem is an immediate consequence of (4. 4 ). 
THEOREM 4 .. G. - Two bases tt. and et.* of boundedness in X are 

equiwzlent, lf and only tf each se( of tL is contained in a set of tt. * and 
each set of a* is contm·ned ùi a set of et. 

TnEORE)I 4. 7. - A boundedness œ, in X ù closed (open) 1/ and only 
~fit admit.1· a closed (open) basis. 

PtWOF. - Let us prove the theorem for closed boundedness. If O?, 
is closed, then the family of the bounded closed sets of O?, is a closecl 
basis of O?i. Conversely, if o?, admits a closed basis yl.,, the~ each 
bounded set BE œ, is contained in a bounded closed set A E cl.,. Hence 
Bis bounded and 63 is closed by (5. 5 ). Q. E, n. 

â. Bommr.Dc'lESs WITH A cou:'l'TABLE BASTS. DEFINITION â.1. - A 
bounded set B"' of a boundedness O?, z'n a topologl·cal space X ù said to 
be maxz'mal, if ece,y bounded set of 0"3 ù a subset of B"'. 

In example (-r) of§ 5, the set X-x is the maximal bounded set of 
the boundedness (i!, defined there. 

T,rnonrn l:S. 2. - For a giren bo11ndedness O?, in a topologicalspace X, 
the following conditions are equwalent .: 

( â. 21) cB has a maximal bounded set B"'; 
(â.22) O?i admù.1· ajinae basù; 
(a. 2:3) the union of any number of bounded sets ù bounded. 
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PRooF. - ( â. :ll) ->- ( ;s. 22). The maximal bounded set B,. itseH 
form a basis of cJ3. 

(li. 22)-+-( ;-s. 23 ). Suppose CG admitsafiniteLasist1-= \ A 1 , .. . ,A,1 :, 

then the union A= A, U ... U A,1 is a bounded set and forms a 
basis of O?,. Since every bounded set is a subsel of A, the union of 
any number of bounded sets is still a subset of A; hence (l'i. 2:~ ). 

( â. 23) ( !'i. 21 ). Let B_. be the union of all bounded sets of Œ. 
B_. is bounded by ( â. 2:i ), and hence it is a maximal hounded set. 

(). E. IL 

The following theorem is trivial. 

THEOREM â. :L - Suppose the bowuledness cB l·n X lias a maxùnal 
bounded set B., then : 

( â. 31) O?, is closed lj and only zf B, is closed; 
UL :12) cB is open lj and only 1f 13. 1s open; 
( â. 3~) cB is proper if and only tf B. is both closed and open. 

The following theorem is a11 imrncdiale consequence of ( l-S. ;33 ). 

THEOREM â. 4. - A connected proper universe n,/wse boundedness 
admits a finite basis is bounded. 

TnEORE~l â. 5. - lf ft is an arbùra,y basis of a boundedness lt> with 
a countable basis but without maximal bounded set, then there exists a 
countable basis e of cB 1vhich consists of a strfr:tly increasz·ng sequence 
of sets of tl. 

PrrooF. - Let = \ D 0 D 2 , ... \ be an arbitrary countable basis 
of cB. Define a subfamily e =je,, e 2 , ••• \ of e:-t as follows. 
Choose G1 E tt wich con laine D 1 • Suppose that C 1, e 2 , .•• , en 
have been so choscn from e:-t that Ci contaius the union e;_, u Di and 
ÏR different frorn C;_1 for i= 2, ... , n. Now there exisls at least.one 
set B0 E o'3 which is not a subset of e,,, for othcrwise en would be a 

1 

maximal bounded sel of Li3. Sincc e:-1- is a basis of cJ3, there exists a 
set Cn+i ee:-1- which contains the union e,,uDll-i uno, Thus a 
strictly increasing sequence of sets e = \ C 1 , e2 , •.• \ has been chosen 
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from e:t, such that D
11 
c C,, for n = 1, 2, . . . . e is a basis of@, for 

every bounded set BE cl3 is a snbset of some D
11 

and therefore a subset 
of C11 • This completes the proof. Q. E. n. 

TnEOREM â. 6. - A proper boundedness (0 whith a countable basis but 
wàlwut maximal bounded set admz'ts an open baszs (Ji, which consùts of 
a strictly increasz"ng sequence of bounden open sets G 1 , G2 , ... , G,,, ... , 
such that G,, C G11 ~1 for each n = 1, 2, 

PuooF. - By (li.5), Ci?, admits a basis C=j C1 , C2 , •• ·l which 
consists of a strictly increasing sequence of bounded sets. Let G 1 be 
an arbitrary bounded open set. Suppose that boundcd open sets G1 , 

G2 , ••• , G,,have been so chosen thaL G,. contains the union G,._ 1 U C,._1 

and is different from G;_ 1 for each i = 2, ... , n. Now there exists 
al least one bounded set B0 which is not contained in G,,, for other-
wise G" would be a maximal bounded set of cl3. Since @ is closed, 
G" is a bognded set. Sincc Ci;, is open, there exists at least one 
bounded open set which con tains G,, U C11 u B0 • Choose such a set 
for our G

11
+

1
, then G

11
,_

1 
con tains G-

11 
U C,, and is different from G

11
• 

Let 0· = [ G 1 , G~, ... ! be the sequence of bounded open sets thus 
defined. It remains Lo prove that <i_} is a basis of@. Let B be an 
arbitrary bounded set of cl3. • Since e is a basis of o?,, B is a subset of 
some set cil E e and hence a subset of Gll-'-1. Q. E. D. 

HEMARK. - \Ve l1ave also shown in the above proof that the leader 
G1 of the sequence (Ji, can be any given bounded open set and that 
the sequencc of the closed sets G 1 , G", ... , G,,, ... form a closed 
basis of@. 

6. LOCAL BOUNDEll~ESS, POINTS AT INFINITY. - DEFINI1'ION 6 .1. -
A point x of universe X ù said to be bounded, zf the set î x \ which 
consists of the sz'ngle poz'nt x ù bounded; othenvùe, ù ù· sm'd to be non-
bounded. 

The set of all bôunded points of X and that of all non-bounded 
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points of X will be denoted by L = L(X) and W = W(X) respec-
tivcly. The following theorem is trivial. 

THEO REM 6. 2. - L (X) ù the union of all bounded sets of X and 
W(X) = X-L; therefore, 

(6.21) L(X) is an open set and W(X) is a closed set, ~f Xis an 
open unzrerse; 

(6.22) L(X) is an F,,-set and W(X) is a G;;-set, ~/Xis a closed 
universe rvith a countable baszs. 

DEFINITION H. 3. - A point .x of a universe .X is said to be finite, ,f it 
is an interior point of some bounded set; otherwùe, it is called a poz·nt at 
infinüy of X. Tlie set of al! _finite points is called the kernèl of X, 
denoted by 1\- = A(X); the set of all points at injinizy ù called the set at 
infinùy of X, denoted by O = û(X). 

The following lwo theorems are obvious. 

TttEOREM H.4. - A(X) is the union of all bounded open sets of the 
universe X; therefore, A(X) is open and O(X) ù closed. 

TrrnoREM 6. 5. - For an open unirerse X, we have 

L( X)= A(X), \V (X)= .Q(X). 

For a boundedness which is not open, a bounded point need not be 
finite. In the example (2) of paragraph 3, the point /; 0 = ( o, o, ... ) 
is bounded by definition. /; 0 is a point at infinity, for the closurc of 
every E-neighbourhood of /; 0 in X is not compact and hencc there is 
no hounded set containing !; 0 in its interior. 

DEFINITION 6. 6. - A unirerse X ù saùi to be local/y bounded at x, 
tf x ù a finite point of X. X ù said to be local/y bounded, zf each 
point of X is jinz'te. 

TnEOREM 6. 7. - Suppose "v = l V l be a base of the open sets of a 
locally bounded unz·verse X, then there exùts a sub f amzly "v * of "'v 
which consùts of only bounded open sets and which forms already a 
hase of the open sets of X. 
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PnooF. - Since Xis locally bounded, for each point xEX there is 
a bounded open set U.,. conlaining x. Then we obtain a covering \ U'"' l 
of X with bounded open sels. Let~'* denote the totality of the open 
sets VE~? such that Y is conlained in some U.,. lt remains to prove 
that C!J. is still a base of the open sets of X. 

Let G be an arbilrary open set of X and x be an arbitrary point 
of G. • Let G_., = Ux () G. Sin ce'~' is a base of X, tbere is a set V,1 . E 'V 
such that xeY,.c G,.. Then V,.e 'V. and G =UV,. 

:cEG 
Q. E. D. 

TIIEORE~I 6. 8. - A compact subset of a locally bounded universe l".<; 

bounded. 

PRooF. - Let X be a locally boundcd universe and X 0 a compact 
subset of X. Since Xis locally bounded, for each point x E X 0 there 
is a bounded open set U" containing x. The family \ Ux I xe X0 l 
forms a covcring of X 0 with bounded open sets of X. Sin ce X 0 is' 
compact, there is a fînite subfamily of [ U,.) which covers X0 • 

Hence X0 is Lounded. Q. E. o. 

7. TRIVIAL HOUNDEDNL•:ss AND cm1PACT HOU:\'DElfüESs. - The boundedness 
of a space is, in general, not a topological property. However, if 
we define a particular boundcdness topologically, it forms a topolo-
gical invariant. The most important of these topologieally invariant 
boundedness are the trivial aud the compact boundedness which were 
used Lo construct the examples given in paragraph 5. 

DEFINITION 7. 1. - The trivial boundedness of a topolog'ical .ipace X 
ù that vvhich makes X a bozmded uniFerse. The triw·az boundedness of 
.a topolo.g'ical .1pace X relative ta a subset X 0 is that ivhich makes X - X 0 

a maxz·mal bounded set. 

DEFil'iITION 7: 2. - The compact boundedness of a topologz·cal space X 
ù that wludi consùts of the totality of the subsets B C X such that the 
closure B o.f B ù com1Jac1. The compact boundedness of a topological 
space X relatù·e to a subset X 0 ù that n4u'cli consists of the totality of 
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the subsets 13 C X such that the closure H of B ù compact and does not 
meet X 0 • 

The following tbeorem is obvious. 

TuEORE~l 7. 3. - The compact boundedness oj a topologfral space X 
l'elatfre to an arbùrmy subset X0 ( n4u'ch might by empty) ù closed. 

THEOREM 7. Il. - For an arbitrmy topological space X, the follmving 
conditz'ons are equimlent : 

( 7 .!d ) X is locally compact: 
( 7 . Id) the compact boundedness makes X a locally bounded unfre1:1·e. 

If, in addùz'on, X be a Hausdorff space, then each of the condi~ 
tz'ons ( 7 . 41 ) and ( 7 . '1.2) ù equivalent to the followz·ng : 

( 7 . !13) the compact boundedness ù open. 

PROOF. - The cquivalcnce of (7 .'11) and (7 .42) is trivial. Sup-
pose X Lo be a Hausdorff space. 

( 7 .1i3) -èr ( 7. !i'.2 ). Let .x: e X be an arbitrary point. Since the 
closure x =xis compact, xis a bounded set of the compact bounded-
ness. lt follows from ( 7. 43) that there exists a bounded open set 
containing x; hcnce (7Ji2). 

( 7. !d) ~:>- (7. 11:3 ). Let B be a11 arbitrary bounded set of the 
compact boundedness. By definition, B is compact. Since X is 
locally boundcd, for each xe 13 Lherc is a bounded open set G.,. 
containing x. Since Bis compact, there are a finite number of these 
bounded sets, say G 01 , Gr,, ... , G,.'/, whose union G contains B. 
Gis a bounded open set containing B; hence we have ( 7. 43). 

Q. E. D. 

T1rnon.E}I 7. S. - The compact boundednes:r oj a llausdm:fj space X 
relatz've to a subset X 0 ù openzf and onlyJf X 0 ,:\' closed and X - X 0 ù 
/ocally compact. 

Pn.ooF. - Ner:essày. - Suppo:,;e the compact boundedness u?, of X 
relative to X: 0 be open. Let .,;v be an arbitrary point X-X0 • 
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Since x = .re X_:_ X0, x is boundcd. Since O?, is open, there is a 
bounded open set G containing x. By the definition, the closure G 
of Gis compact and contained in X - X0; hence X- X 0 is locally 
compact. Further, we have proved that every point of X- X 0 is a 
fini te point. It is trivial that every point of X 0 is a point at infinity. 
Hence X0 , as the set at infinity of an open universe, must be a closed 
set. 

Suj/iciency. - Suppose X 0 be closed and X - X0 be locally 
compact, and denote by 03 the compact boundedness of X relative 
to X 0 • l.et B be an arbitrary hounded set of 63, thcn Bis compact 
and ·contained in X - X 0 • Since X- X 0 is locally compact, for 
cach x E 13 thcrc exists an open set G.,. containing x such that the 
closure G_,. of G., in X - X 0 is compact. Since X is a Hausdorff 
space, G,. is a closed set of X and hence G,. is the closure of G". in X. 
Since B is compact, there are a finite number of these open sets, 

,7 

say G,,, G ,.,, ... , G,,,, whose unio~ G = U G,,, contains TI. Now 
·'/ 

G = U G,, C X - X 0 is _compact, G is a bounded open set contai-

ning B. Hence (i3 is open. Q. E, D. 

8. BouNDEDLY CO.IIPACT UNIVERSES. - The notion of bounded ·com-
paclness, studied in the present paragraph, was introduced by 
J. \V. Alexander [ 1 J. 

DEFINITION 8. 1. - A unirerse X is saùl Lo be boundedly compact, zf 
eve,y bounded closed set of X ù compact. 

D1mNITION 8. :2. - A collection of sets is said to have the finite inter-
section propert_y, lf eve1y fhu'te subcollect,·on has a non-empty inter-
section. 

T11EOREM 8. 3. - A unz·vcrse X is boundedly compact zf and only zf 
ere,y collection of bounded closed sets iT·ith the jinùe inlersectiôn 
property has at least one common point. 
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PROOF. - Necessày. - Suppose X by boundedly compact, and 

let ( F l be a collection of bounded closed sets with the finiLe inter-
section property. Let F 0 be a parLicular bounded closed set \F l, 
then F 0 is compact. Let [ F* / by the collection of closed sets of F 0 

which consists of the totality of the sets F* = F () F 0 , FE/ F l. 
Let F~, ... , F;, be an arbitrary finite subcollection of j F* \. Since ( F l 
has the finite intersection propcrty, F 0 , Fi, ... , F 11 have a common 
point, say ;.v; hcnce F~, ... , F,: have x as a common point and i F* l 
has the finite intersection property. Since F 0 is compact,\ F*] has a 
comrnon point x 0 which is clearly a common point of the collec-
tion l F). 

,",'ujjlciency. - Suppose the condition be satisfied, and let F0 be an 
arbiLrary bounded closed set. LeL [ F j be an arbitrary collection of 
closed sets of F0 ,vhich has the fini te intersection property. Sin ce F0 

is a bounded closed set, [ F l is a coll cc Lion of bounded closed sets of X. 
Hence it follovvs from the condition that ( F l has at least one cornmon 
point and F 0 is compact. Q. E. n. 

DEFmITION 8. li. - A bozuuled coven·n/ .. r of a subset X 0 of a unicerse X . 
is a collection of bounded sets of X o-hose union contains X 0 • 

T1rno1rn~1 8. 5. - A local/y bounded unr·1 ·erse X boundedly compact, 
z/ and only ,f e1·e,y bounded open covering ( U) o/ a bounded closed 
set F C X has a jinùe subco1·erà1g of F'. 

PrrooF. - Necessz'ty. - Suppose X be boundedly compact, and\ U l 
be an arbiLrary bounded open covcring of an arbitrary bounded 
closed set F C X. By (8. J ), Fis compact and, thereforc, \ U l has a 
finite subcollection which coverc F. 

" 
S1~fficiency. - Suppose F be an arbitrary bounded closed sel of X 

and \ V l be an arbitrary open covering of Fin X. Since Xis locally 
bounded, for each point x E F there cxists a hounded open set vV x 

contammg x. Since ( V l is an open covering of F in X, for cach 
point x E F therc exists an open set V,, El V j containing x. Let 
U,G= v,,n \V,,, then the collection ( U,, \ forms a bounded open 

Journ. de Math., tome XXVIII. - Fasc. lt, 1919. 38 
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covering of F. lt follows from Lhe condition that \ U,,,,) has a finite 
suhcolleclion, say U,.,, U.,.,, ... , U,,1, which covers F. Since 
U_,..,= V,; ri \V,.,, the finite subcollection V_,,,, V,,,, ... , V",, covers F. 
Hence Fis compact. Q. E. o. 

T1mOREM 8. 6. - U a closed wm'e1:,·e X ù local/y bounded and 
boundedly compact, then X ù locally compact. 

Prroor. - LeL x e X. Sin ce X is locally bounded, there is a 
bounded open set G which contains x. Since Xis a closed universe, 
G is a bounded closed set of X. Sincc X is boundcdly compact, 
Gis compact. Hence Xis locally compact. Q. E. D. 

The foltowing Lheorem is evidcnt. 

T1mOREM 8. 7. - Every umi·erse X 1vitb the compact boundedness 
relatÙ'e to a subset X0 ( n.i/u'ch might by empty) ù boundedly compact. 

Therefore, bounded compactness is a property of the given boun-
dedness instead of the given space X. However, if the space X is 
compact, then every universe X with an arbitrary boundedness is 
boundedly compact. 

9. S1MPLICIAL UNIVEI\SES. - Throughout the presenL paragraph, let X 
be a polytope in the sense of S. Lefachelz LG, p. g] with \a') as its 
open simplexes. 

DEFINITION 9. 1. - The sùnpliàal boundedness of a po(ytope X is the 
one which ù genaated by the famdy \ d: of open sunplexes. A po(y-
tope X ff'zÛt the sùnpliàal boundednes,ç is called a simphcial universe X . 

• 
T11Eorrn1r 9. 2. - The siinplz'dal boundedness of a polytope X is 

closed. 

PnooF. Sin ce Lhe closure d of an open simplex a' consists of a 
finile number of open simplexes, d is a boundcd closed set. Let B 
be an arbitrary bounded sel, then tbere exists a finite number of open 
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simplexes o'i, d 2 , ••• , d 8 such that Be U d,-. Ilence De U2,- is a 

bounded closed set. Q. E. IL 

T11EORE~1 9. 3. - For a g/1·en polytope X, the .followùig condàions 
are eqiâvalent : 

(9. 31) The polytopr: X ù locally jinàe. 
(9.:32) The s/mplù:ial universe X ù locally bounded. 
(9. 3:3) The simplràal boundeclness of Xis open. 

PrrooF. - (9.3J)-;.. (9.:J2). Let xeX by an arbitrary point, 
then there is a unique open simplex d which con tains x. Let S( d) 
denoLe the open star of cr', i. e. ll1e totality of the open simplexes 
each of which contains cr' in its closure. Siuce X is locally finite, 
S( d) consists of a finite number of open simplexes. 1-Ience S( d) is 
a bounded open set containing x, and Xis locally bounded. 

(9.32) . ....,.. (9.33). Let B be an arbitrary boundèd set, then there 
exist a finite number of open simplexes di, a\, ... , d 8 such that 

'! 

Hence Be Uo\ As a closed subseL of a compact 
i=:: t i--=. I 
q 

set U di, Bis compact. Since Xis locally bounded, for each xe B 

there is a bounded open set G". containing x. lt follows from the 
compactness of B that there ~xist a finite number of Lhese bounded 

. open sets, say G.,.1, Ge,, ... , G.,.,1, whose union con tains B. Hence 
q 

U Gx, is a hounded open set containing B, and the simplicial 

boundedness of X is open. 
(9. 33)-+ (9. :H ). Let cr' be an arbitrary open simplex of X. 

Since the simplicial boundedness of Xis open, there exists a bounded 
open set G containing o'. By definition, there are a finite nurnbcr of 

'/ 

open simplexes, say d 1 = d, d 2 , .•.• d,, such that Ge U d,-. 

Let de;;. by an open simplex of X different from each of t.lie sim-
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plexes a\, a\, ... , a\. Theo d-'1- C X-G, and the closure d"" does 
not meet d. Hence the open star S(d) consists of only a fînite 
number of open simplexes; and, therefore, Xis locally finite. 

Q. E. D. 

TnEORE1I 9. 4. - For a {ocal(y .Jinùe polytope X, the sùnpltàal boun-
dedness cot·ncides wùh the compact boundedness. 

PnooF. - lt is trivial that the closure of a bounded set in the 
simplicial boundedness is compact. Conversely, let F be an arbi-
trary compact subset of X. For each point xE F, let d denole the 
open simplex containing x and G., = S( d) Lhe open star of d. 
Since X is locally finite, G., consisls of only a finite number of 
simplexes. From the compactness of F, there exista finite number 
of the_se open stars, say G,,, G ,,, ... , G ,,,, vvhose union covers F. 
Hence F is contained in a 1inite number of open simplexes and the 
proof is complete. Q. E. o. 

TrrnonEM 9. 5. - The sùJ1phcial boundednes of a polytope X admùs a 
countable basis, (/ and only zj the polytope X ù countable. 

Pnoor,. - Necessùy. - -Suppose that the simplicial boundedness 
adroits a countable basis \ B" l = i B,, B2, ... 1. By definilion, Bn is 
conlained in the union X 11 of a 1inite number of open simplexes .. 
Since [ 1311 ) is a basis of the simplicial houndedness, each open 
simplex dis conLained in some B11 and hence in Xn- Therefore, there 
are only a countable number of open simplexes d EX. 

Suffiàency. - Suppose that X be countable and let di, d 2 , ••• be 

its open simplexes. Let X 11 = U d;, then the family ( X 11 ] forms a 
i== l 

countable basis of the simplicial Loundedness. Q. E. D. 

TrrnORE'.\I 9. G. - For a given po(ytope X, the /ollowing condiûons are 
equù,alent : 

(9.61) The polytope X ù.Jln/te. 
(9. 62) The s,'mpüc,'al un,'verse X ù bounded. 
( 9. 63) The sùnphcùd boundedness of X has a maximal bounded set. 

f 
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PRoOF. - The implications (9.G1)->-(9.G2), 
are trivial. lt remains to prove (9.6:3) >-9.61). Let B., be the 
maximal hounded set. By the definition of the simplicial bounded-
ness, thcre a Jinite numlier of open simplexes ?",, cr\, ... o'" such 

ll Il 

that B., C U o';. Sin ce U c/1 is bounded and B., is the maximal 
i=-: ! i.-= 1 

bounded set, we liave 13_,_ = U c/1• If t here is an open simplex cr' EX 

different from each cr'; (z' = 1, 2, ... , n), then B~ U cr' would be a 
hounded set. Hence 1\ = X. Q. E, D. 

JO. M1mHZABLE UNIVEI\SES. - lu a metric space X with the metric p, 
there is à nalural houndedness ( called the boundedness de.fined by the 
metric p) described as follows. vVe call a set B C X bounded if its 
diameter B(B) is finite. 

DEFINITION JO .1. - ~ 1 metrr'c Jpace 0•1'tl1. the boundedness rhfined by 
ils metrù.: 1·s called a metrt'c uni1 ·erse. ~ 1 1miretse X is said to be metri-
::;able 1f there can be ùztroduced a metric p wlu"ch deflnes both the topo- . 
lo,!.iY and the boundcdness of X. 

'f1mo11E~1 JO. 2. -- E1·e1'), mctrt'::;a/Jle /llu·rerse ùproper, locally bounded, 
and wùli a cozmtable basi's o/ ils boundedness. 

P1tooF. -- Let X he a metrizable universe, and p be one, of its 
defining met.ries. Let 13 hy an arhitrary bounded set. Since 
ô( Û) =" o(B ), 13 is bounded. FurLl1cr, the z.-neighbourhood of B is 
an open set witlt diameter L o(B) + 2 s. Hence Xis proper. 

Let x EX be an arbitrary point, t hen the E-neigl1bourl10od Ux is a 
bounded opeu set containing x. Hence Xis locally bounded. 

Choose a Jixed point x 0 e X. Let G" denote the n-neiglibourhood of 
x 0 (n = I, 2, ... ). lt remains to prove tliat the family C}j, = \ G1 , G~, ... l 
form a basis of the houndedncss of X deitned by the metric p. Let 13 
be an arbitrary bounded set. Choose a point x 1 E B, and let 
d=p(.r0 , ;r 1 ), o::=Ô(B). Then p(.r 0 , x)//d-1-Ô for each xeB. 
Hence Bis contained in Gn if n > d + ô. Q. E. n. 
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Let X be a metric space with met.rie r, and M Le a subset of X. 
\Ve use the notations : 

d 0 (:.c 0 , M) ·_: inf [J(,.c0 , .r), 
' xE.\l 

Ô? (.r0 , M) .... : sup p (.x:0 , x). 
.rE)I 

ÜEFINITWN 10. 3. - Tivo metrics p1 , P:i l·n a set X are said to be 
completdy equz'valent, lf they de.fine the same topology and same 
boundedness ùi X. 

TrrnonEM 10.li. -- To:o metn·cs p1 , P:i ùi X are completely equivalent, 
U and only lf the follmvùig two condlûons are both saà:,jied for each 
poùit x EX wu! each subsel l\I C X : 

(10.41) d?,(x, M)anddp,(_x, M)areboth::;eroornot; 
(l0.li2) ô?,(x, M)andèp,(tr, M)arr;both.finùeornot. 

P1woF. -- Sincc ( 10. lit) is the ncccssary and sufficient condition 
for p 1, p:i to delînc l he same topology, it remains to prove Lhat (10. 42) 
is Lite necessary aud suflîcienl condition for p1 , p2 to define the same 
houndcdness. 

J 

Necessity. - .Suppose ô?,(x, M) he fînite for a given pair x and M. 
Since 22,(l\1) /~2 ô?,(x, ?\I), M is bounded. Let x 0 E M, then 
ôp,(x, M) ~p:i(x, x 0) + 2PJM). Hence Ô2,(x, M) is also finite. 

Su.f!iciency. --- Suppose M be bounded in the houndedness defined 
b y p 1. Thcn, as ah ove, Ô2, (x, M) is fini te for an arbitrary point x EX.· 
By (10.112), ôp,(x, M) is also finite. Since àPJM)~2ôp,(x, M), 
Mis also bounded in the boundedness defined by p2 • Q. E, n. 

DEFINITION 10. 5. - The euclùiean n-space Il" ( the Hilbert space R"') 
wùh the boundedness de.fined by ùs metrz'c lS called the euclideqn 
n-uniïerse H11 ( the 11tlbert universe R''' ). 

The following thcorem is trivial. 

TnEORE~l iO. G. - For the euclidean n - space R", the compact 
boundedne.1·s coincides ivit!t the boundedness dejÎ'ned by ùs metric; hence 
the euclùlean n - universe H" is bounded(v compact. 
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1 l. BouNnEDNESS OF TRANSFOI\MATlONS. - ÜEl'!NlTIOi\' 11. J. - ,,1 tmns-

formau'on .f of a unÙ'ers X ùzto a universe Y is rnid to be bounded, zf 
the image of Cl'l'IY bounded set of Xis a bounded set of Y; ù is sazd to 
be boundùzg, zf tlte inverse ùnage of ere1y bounded set of Y ù a bounded 
set of X. 

DEFINITION 11. 2. - A lwmeommphism h of a unù·erse X onto a uni-
verse Y is smd to be complete, if h ù both bounded and boundz"ng. 
X and Y are said to be completely homeomorphic, zf there exists a 
complete homeomorphùm li of X onto Y. 

The notion of complete homeomorphism defined above is due to 
J. vV. Alexander [ I]. The following statement is trivial. 

T1rnoREM 11 . :L - /Joth topolo/c.;y and boundedness are invariant pro-
peràes under complete lwmeommpÎusms. 

Now let f be a transformation of a universe X into topological 
space Y, and denote by a?:,=\ B j the boundedness of X .. • 

DEFTNITION l l . 'i. - The boundedness ùi Y generated by the family 
[/ ( B) l is called the z·mage of 63, denoted b_y f( u?:, ). 

TnEOREM 1.1. 5. - 1/(B) ù a basis off( u?:,). 

PRooF. - Our theorem follows from the relation 

The following theorem is trivial. 

TnEOREM 11. G. - f ( O?,) l!i the ,veakest boundedness that can be z·ntro-
duced in Y so that f becomes a bounded tramformatz'on. 

Next let/ be a transformation of a topological space X in Lo a uni-
verse Y, and denole bye=: C) the boudedness of Y. 

DEFINITION 11. 7. - The boundedness ùz X generated by the Jamily 
\/- 1 (C) l ù called the z·nverse image of e underf, denoted by J- 1 ( e). 
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T11EoRE~1 ,f J. 8. - l,/-1 ( 0;) l is a basis oj 1-1 ( e). 

PROOF. - Our theorem follow:;; from the relation 

The following theorem is trivial. 

TnEOREM '.H. 9. - 1-1 ( e) is the 1veakest boundedness that can be 
introduced l·n X so that f becomes a bounding transformatl'on. Further, 
zf fis a rnapping, then f- 1 ( C) ù closed, open, or proper, accordl·ng as C 
is closed, open, or proper. 

J2. RELATIVIZATlON OF noUNDEDNESS. - Let X be a universe with 
boundedness {/3 = i B J, and X_. be a subspace of X provided with the 
topology obtained by relativization. 

T11F.ORE~1 J 2. J. - The family of subsets : 13 n X_.) ù a boundedness 
in X_. whicli wtll be calfrd the boundedness ci?,_. relative to (i?,. 

PnooF. - Let D,, B2 E 03, then we have 

. ( Il, n \.) u ( B, n \.) = ( B, n Il,) n \,. 

Hence ( B n X_.] satisfies (L 1~ ). Let C be a subset of B n X_., 

then CE ci?,. It follows tbaL C = C n X .. is a bounded sel of; B n X .. i · 
Hence l l3 n x .. \ satisfies (J. ·I 1 ). Q. E. IL 

DF.FIN1no:-. J2. 2. - The subspace X_. C X wz'tlt the boundedness ci?,_. 
relatù,e to 03 is called the sulmniverse X_.. 

T1rnonE11 12. :3. - _ I subuni1·erse X_. o.f a closed, open, orproper um._ 
verse Xis closed, open, orproper. 

PnooF. - Suppose X be a closed (open) uni verse. Let B be an 
arbitrary bounded set of X, then there exists a bounded closed set F 
( a bounded open set G) which contains B. By relativization, 
F n X_. is a bounded closed set ( G n X .. is a bounded open set) of the 
subuniverse X_. which con tains B n X_.. Hence X .. is a closed (open) 
umverse. Q. E. D. 
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TrrnoREM J2.li. - If a point xeX"'cX ù ajinite poùlt of the un/-
verse X, then x lJ' also a finite point of the rnbwu'verse X"' i hence a 
subunù:erse X,, of a locally bounded unirerse X ù locally bounded. 

PROOF. ;-- Since x is a finite point of X, there is a bounded open 
set G of X which con tains x. Then G /Î X-v- is a bounded open set of 
X"' containing x, hence a: is a finite of X"'. Q. E. n. 

T11EORE11 12. C>. - U L'l =:A\ ù a basi.s of the boundedness (/3 of a 
uni11erse X, then thefamily L'l..~= i An X.: ù a basù oftheboundedness 
(/3 l·n X-v- relatù·e to {/3. 

PROOF. - Let B /Î X. be an arbitrary bounded set X.. Sin ce 
L'l. is a basis of 03, there is a set A E e:1. which contains B. Hence 
DnX"'cAnX., and jAnX"j is abasis of O\. Q. E. n. 

CoROLLARY 12. (i. - U the boundedness c/3 of a universe X admit.1· a 
countable (Ji nite) basis, so does the boundedness (i\ of eve,y subunù·erse 
X"'o/X. 

T11EOREM l2. 7. - Tite ùlenàty mappin,g of a subunù•erse X., of a 
universe X Ùlto X ù bot!t bounded and boundùlg. 

PiooF. - Let 1\ be an arbitrary hounded set of X"' i Lhcn by~-the 
definition of (i\_, tliere is a bounded set 13 of X sueh thaL B"' = B /Î X .. , 
Hence 1\ C Bis also a bounded sel of X, i. c. the identity mapping is 
Lounded. Conversely, let Mc X. Le a hounded set of X; then 
M /Î X. is also a hounded set of X,. Hence the identity mapping is 
boundiug. Q. E. D. 

Hereafter, the subspaces L, W, A, ü of a universe X will be provi-
ded with the boundedness ohtained by relativization; and, therefore, 
they are subuniverses of X. 

T11EOREM 12. 8. - Tite kemel A o/ a universe X ù the greatest local/y 
bounded s11bunfrerse of X 11../u'c/1 /s an. open set of X. 

PROOF. - Let xeA, then there is a bounded open set G of X 
Journ. de Math., tome XXVIII. - Fasc. 4, rg49. 3g 
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which con tains x. Then G n ,\ is a bounded open set of A contai-
ning x; hence A is locally bounded. A is an open set of X by (6. 4). 

On the other hand, let an open set X-v- of X be a locally bounded 
subuniverse of X. Let x Le an arbitrary point of X-v-. Since X-v- is 
locally bounded, there exists a bounded open set G of X-v- which 
contains X. Then G is also a bounded sel of X. Since x-1'- is an 
open set of X, G is also an open set of X. Hence xis a fini te point 
of X, and X-v-cA. Q. E. n. 

T1-1EOREM '12. ~). Thl' kernel ;\ of an open unù-erse Xis the greatest 
locally bounded subunz"rerse of X. 

Prwor. -- By (J2.8), Ais a locally 'bounded subuniverse of X. 
On the other hand, let X,, be a locally bounded subuniverse of X and 
let x e X-v-. Theo x is a bounded point of X-v- and therefore a 
bounded point of X. Since Xis an open universe, xis a fini le point. 
Hence X-v-cA. Q. E. ·n. 

13. METRIZATlON. - DEFmITION °17-. 1. - , f characterùtz'c Junctz·on 
of a um·\"Crse X ù a rcal-vrd11ed conànuou.1· .Jtmcàon '~ o dejined oçer X 
in such a way that a subset M r~/ X ù bounded rf and onf;y (/ the least 
upper bound ~/ if over M ù jinùe. 

THEOREJI '13. 2. - .f normal unirerse X admàs fl characterùtz'c 
.function ~' lf and only zf X ù proper, locally bounded, and ~vùh a 
countable basis of its boundedness. 

PtwoF. - Necessüy. - Suppose X be a universe ,,hich adroits a 
characteristic fonction 41. Let xe X and~( x) = y._ Choose b > y, 
and denote by D11 the subset of X which consists of the totality of the 
points ç EX l'or which 41( ç) < b. From the continuiLy of~' it follows 
that B11 is an open set. By the condition of a characteristic f'uncLion, 
131, is bounded. Since :ce 13 11 , Xis locally hounded. 

Next let D be an arbitrary bounded set, choose b so thal 

b > sup,E11'f(J:). 
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Then B1, is a bounded open sel and Bi, is a bounded closed set both 
containing B. Hence Xis proper. 

Now let B,, denote tbe subseL of X which consists of the totality of 
l • · ;,- ·xT j' } • h 1 ( r) / \ rrh I B l . . t 1c pomts ç E .1 or w uc y ç .,, n ( n = I, 2, ... )· . en 1 ,, 1s 

an increasing sequence of' bounded open sets. Let B be an arbi-
Lrary bounded set, and choosc a positive integer n > sup,.e11 t(x). 
Then B C B". • Hence ( B,, \ forms a coùntahle basis of the boundedness 
of X. 

SuJ!iâency. - Suppose X be a normal universe satisfying the 
condition of the theorern. If X is bounded, then t ( x) = o is a 
characteristic fonction of X. Hereafter, we assume X to be non-
bounded. Since X is locally boundcd, X cannot have a maximal 
bounded sel. lt follows l'rom ( l.>. ti) thaL the boundedness of X has a 
basis qj. which consists of a sLrictly increasing· scquence of Lounded 
open sets G1, G2, ••. , Gll, ... such thaL G" ts contained in Gn+i for 
each n = 1, 2, .... 

Since G,. and X - G"+ 1 are disjoint closed sets of a normal space, 
it fo1lows from Urysohn's lemma Lhat Lhere exists a conlinuous 
fonction f" dcfined over X such that : 'fi x) = n :.___ 1, if x E G"; 
1} 11 (x)=n, if xeX-(;11,; and n-1.,/~trJx)'.ê~n for each nEX. 
Now define y by taking t(x) = fn(x) if xe Gn+i - G"" It rem.ains 
to prove Lhat If is a characteristic function of X. 

T11e continuity off follows from the fact that f,,~, (x)=n-1 = f n(x) 
for each x E (~" - Gw N ow let l\1 be an arbitrary set of X. If M 
is a bounded set, then there is a set G,,+ 1 couLaining M; hence 
f(x).:~n for each xeM. Conversely, suppose Lhat sup_,.eMf(x) is 
finite. Choose n so large that t( x )< n for each x E M; then we 
have MC (; 11+ 1 and Mis hounded. Q. E. D. 

Let ll''' be the Hilbert space with coordinates system y 0, y1,y2, •• • , 
y,,, . . . . Let H denote the half-line defined by y 0 ;-:--. o and 
y 11 = o ( n = I, 2, ... ) ; and 11'1 , the Hilbert cube defined by y 0 = o 

and o a·/Yr, / 1- ( n =-= r, 2 1 ... ). \Ve shall denote by H'·' the single-~n -

winged Hilbert cube defined hyy0 ~o and O/:":y11 <~(n=1,2 ... ). 
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TttEOREM i5. ;3. - A necessmy and rnjJicientcondition.fora universe X 
to be complete(y homeomor1Jhic wùh a subset of the Hilbert uni\'erse R''' 
is that be normal, proper, local(y bounded, wùh a countable base of its 
topology and a countable baszs of ùs boundedness. 

PnooF. - The necessity follows immediately from Urysohn's 
imbedding theorem and ('10. 2). It remains to prove the sufficiency. 

Dy Urysohn's imbedding theorem, there exists a homeomor-
phism Ji of the space X onto a subset of the Hilbert cube l'''. Let 
Yn(x)(n=r, 2, ... ) denole the nth coordinate of /z(:r)EI'''. By 
( i5. 2) there is a characteristic funclion ~o defincd over X. Now 
let y be the mapping of X into the single-\,inged Hilbert cube H'", 
defined by 

(tEE X). 

Clearly is a homeomorphism of X onto a subsel of 1-1'''. Next let D 
be an arbitrary bounded set of X; by ( f ;"i. J) tl,ere exists a positive 
number b such that ~0 ( x) E b for each x /~B. Therefore the 
image ~(B) is conLained in the bounded set < o, b > >< l'·' of the 
Hilbert universe R'". Hence y; is bounded. On tlie other hand, let 
AC H'•1 be an arbitrary bounded set, thcn there is a positive number c 
such that the oth coordinate y 0 of every point yeA is less than c. 
Now let Be denotc the subsct of X which consists of the totality of 
the points x EX such that th( x) < c. By (1 ;"i. l) B,. is a bounded 
set of X. Since the inverse image y- 1 (A) is containcd in D0 it is 
bounded. • Hence 'fis boundeding. Q. E. D. 

TuEORE}I f 5. 4. - . 1 separable metri~able unii·erse X oJ dimensz'on n 
ù completely homeomorphz'c with a su/Jset of the euclidien universe R2"~2 • 

PROOF. - The proof is almost exactly the same as that of (i.3.:~), 
by using Menger-Noebeling theorem ['i, p. 6oJ inslead of Urysohn's 
imbedding theorem. 

THEOREM i.3. 5. - U X be a proper unù,erse wàh a countable basis of 
its boundedness and z/ the kernel A be a separable metrizable space, then 
a metric p can be introduced in A in such a way that: 
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( 15. 51) a subset MC Ais bounded, tf and only ~/ the diameter o(M) 
ù .finite; 

( 'l 5. 52) /or each pair of points .r0 E A, x.,,. E A - A and each posùù·e 
number b, there exùts an open sel G x.,,. such that p ( x 0 , x) for 
each .r e G n A. 

PRoor. - Since X is proper, the sulnmiverse A is also proper 
by(12.3). By(12.'J)Aislocallybounded. By(l2.G)A admits 
a cou111ablc basis of its boundedness. Hence it follows from (15.:l) 
Lhat Lhere exists a complete horneomorpliism (fi of A onlo a subset of 
the Hilbert uni verse H'''. Let a me tric p be defined over Abyme ans 
of p (.2\, x'2) = p [ (fi( x 1 ), (f( x 2 )] for each pair x1J x 2 of A. Sin ce (fi is 
a corn plete homèornorphism, ( 15. 51) is satisfied. 

To prove ( J 5. 52\ let x 0 E A, :x:.,,. E :\ - A, and b > o be arhitrarily 
given. Let B denote the sel of points X of A such that p ( x 0 , x) b, 
then A is a hounded closed set of ,\. Since A is proper, there i~ a 
bounded open set U of A ,vhich con Lains B. Since Ais itself an open 
set of X, U is a bounded open set of X. Since X is proper U is a 
bounded closed set of _X and U CA by ( G. 5 ). Hence the open set 
G = X- U contains x, and G n ,\ is contained in A - l3. Therefore, 
it follow~ thas p(x0 , x) > b for each xe n ,\_ and (15. 52) is proved. 

Q. E. D. 

Ill CoNNECTIVITY TIIEORY OF Ui'iIVERSES. - The Cech theory of homo-
logy and cohomology groups of a universe can be naturally defined, 
a sketch of which is the object of the present paragraph. 

Let X be an arbitrary uni verse, and 03 = l B l be the houndedness 
of X. Throughout the present paragraph, a finilc open covering of 
X will be simply called a coverùzg. 

Let IX= j a 1 , a"' ... , a;,,; be an arbitrary covcring of X, and let No: 
denote Lhe ne,w of IX. A vertex fi; EN a is said to be special, if the 
open set a; E cc is not boundcd; a simplex d EN o: is said to be speàal, 
if all of its vertices are special. The special simplexes of Na consti-
tute a closcd subcomplcx Mo:, called the Jpecial subcomplex of No:· 

A covcring = [ h,, b2 , ••• , b;~ l is saicl to be a refinement of the 
covcring cc ( denolcd by iz <~),if each b, E is conlained in some a1 EIX. 
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Let L be the set of ail covcring of X', partially ordered by the rela-
tion IX<~- L is a direct set since any two coverings IX and~ have a 
common refinement, obtained by mutual intersections of the elements 
of IX with those of~-

Suppose IX<~- Let us select for each member of~ a member of 
IX contammg it. This• gives a simplicial mapping <l>p," of N into N" 
which is called a projectt"on of N13 inlo N"'. It is trivial that 
<l>"a(Me)C M". For any tvrn proJ·cclions <l>rh and rlirh of Nr, into N,0 /-" 1 ._, i 1 1 1 

it is easily seen that for each simplex d E Nr3 the simplexes <l>:fa( d) 
and~~"( d) are faces of some simplex "C'EN" and that "C' can be selected 
from l\f:, if d E Mr3. Further, if 'l. < < 1 and<!.>~"' hr, are projec-
tions, <l>p,"'rf·::3Îs a projection ofN,,into N". 

For a given commutative cocfficicnl group G, let us denote by 

ll11(a:)=ll 11 (N"modM,,, G), 
Il,.( a)= Jin (N" mod'\l 2 , G), 

the n11i hornology and the 11 11, cohomology groups of N" modulo M" 
l11, p. 1161, The projections <1> 13:,: of Nr3 into N"' induce unique homo-
morphisms 

tuf,,: : lin ( /3) -->-- Hn ( ü:), 

further, if 1X < r1 < 1, the following relations hold : 

This shows that for any integer n and coefficient group G, 
l H 11 ( 'l. ), a EL) is an inverse system of groups with homomorphisms 
w~" and j H11 (a), IXE L l is a direct system of groups with homo-
morphisms -r:,,~J· 

DEFINITION 1.4 .1. - Let X be a unÙ'ersl', Ga commutatii'e group, na 
non-ne,t:;-atù,e integer, and L = {IX) the collection of al! the cMer/ngs 
OJ X. The lùnù /-:TOllp of the ,·nrerse system j H 11 ( c,: ), c,: EL) ù defined 
to be the n' 11 homolo.gy group H,,(X, G) of the unù,erse X n.iùh co~f!ic1·ent 
group G. The hmit /!,'l'Ollf of the d/recL qstem [ H" ( c,: ), c,: EL ) ù d\fined 
to be the 1111, colwmology group J--_1/1( X, Cr) o.f the unt"rerse X 1vùh coeffi-
cient group G. 
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If X is a compaclum and with the Lrivial boundedness, then our 
definition redu ces to the usual Cech theory ['t, p. r 35]. If Xis locally 
compact, with the compact boundedness, and homeomorphic to an 
open set of some normal space, then the above dcfinition reduces to 
the definition given by P. Alexandroff [2, p. 82]. 

T11EOREM 14. 2. - Let G be a discreie group and G* its compact 
clwracter {p·oup; then /or each universe X and each integer n "'·· _ o, 
ll11 (X, G*) i'.1· the charactcr group ~/ H11 (X, G). 

PROOF. - For each a EL, the compact homology group Hn( r:t., G*) 
is the characlcr group of the discretc cohomology group ]-]"( r:t., G) 
[2, p. 531- Furlher, ÎL can be casily seen that the homomorphisms 
w!fo: and n,,:i arc dual Lo cach other; hence our Lheorem follows from a 
statcment of [li, p. 1341- Q. E. n. 

TimoRE~t 1/t. :L - /,et X be a proper 11nù·erse and A be ùs kernel, then 
.foreach coefficient group Gand each integer n~o the followùzg homo-
morphisms hold : 

(14.::H) 
(14.32) 

II,,(X, G) 11,,(A, G), 
11 11 (\, G) ll 11 (\, G). 

PROFF. - The argument given below is an analoque of Lhat used 
by P. Alexandroff [ 2, p. 87 j in bis pro of of the Kolmogoroff duality 
thcorem. 

Let a=\ a 1 , ••• , ap, ap+t, ... , a,,, Oq+t, ar j be a covcring of X, 
where r:t. 0 = [ a1 , ••• , a") denotes all the boundcd elements of 'l. aud 
r:t." = [ a, ... , a,, l denoles all the elements of a which are contained 

fi 

in A. Lel Q,, denote the bounded closed sel U ai. The covering r:t. 

is said Lo de regular, if ( 1) every element of 'l. which meets Q"' belongs 
to a", and ( 2) a" is a covering of,\. 

The regular cocerùigs /onn a co.fùwl su/Jset R a/ the set ~/ all coçe-
r/ngs ~/X. Lndeed, let a be an arbitrary covering of X. Denote all 
the non-void sets of the form ,\na;, a; E a by ~" = ( b,, ... , b,,, b1,1-1, ••• , b1,) 
where ~o = / b,, ... , b1,) are Lhe bounded elemenls. ~" is evidently 
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A 

a covering of A. Let P denote the sel U 7;;, and let bk+i = aq+;- P 
i=l 

(i=1,2, ... ,r-q);1henthecovering 

is a refinement of cc Sin ce Q:, = P, is regular. 
For every covering Ô = : d1 , •..• d1. : <~/ A there ù a regulm· corering 

a o/ X wùh t1/.• = Ô. ln facl, let ô0 = [ d1 , ••• , d1,) denole the 
/1 

bounded elernents of 2 and let P = U d;. The covering a consisting 
i-.::1 

of all the elements of 2 and the X - P is a required one. 
Any two regular co\'erin,f.;s a and~ of X !wce a common rejinement y, 

such tlwt -y,. is a common rejinemenl of t1/.,. and~.. In fact, let Ô be a 
regular covering ,diich is a comrnon refinemenl of t1/. and ~- Denote 
all the non-void sets of the form a;r.b1 ncft., where a;Eal/,, bJEBl/,, 

d1,Ei\, byy.,=\c1, ... ,C111,Cm~1,, ... ,c11l, wherero=(c1, ... ,c/1/l 

denotes the hounded elernents. Let P denote the set u--;;,, and let 

c11 + 1 , ••. , es denole all the sets of tlie form d;- P, where d; E Ô - ôl/,. 
The covering 

is a required one. 
In the set H of ail reg·ular coverings of X, we define a partial order 

hy the statement : t1/. < if ( 1) is a refinernent of a and ( 2) ~l/, is a 
refinement of a,,. , It follo,vs from the foregoing prelirninary conside-
rations that I-1 11 (X, G) ù isomorpht'c wàh the limà group of the /nverse 
system \I-l 11 (N_,.modM", G), aeH\ wùh w:fa as the homomorphùms 
and that H11 (X, G) ù ùomorpltic ll·'lÛt the limit group of the dù·ect 
system j H 11 ( N _,. rnod Mn G) !Y.EH l ir•t't/1, no::, as the homomorphùms. 

Now let aeR, then t1/.l/, is a covering of,\. Let N:x, N"', dcnote the 
nerves of a, al/,; and let M:x, Mo:, denote the special suhcornplexes 
of l\':x, 'l:x,· Since each vertex of~"', is a vertex of N"', it follows 
that No:, C N ,:• Sin ce for a proper uni verse X the hounded sets of X 
coïncide with th ose of A, it follows that M", CM". 

N"-.M"=T\",-Mx. for each !Y.ER. In fact, let cr'EN~.-M:x; 
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then cr' has a bounded sel a; of X as one of its vertices. It follows 
from the regularity of o:: that all the vertices of d helong to ax, 
i.e. dENx* Since a; is also a boundecl set of A, dENx,-Mx,· 
Conserve! y, suppose d E I\ °'· - M",; then d has at leas L one vertex a; 

which is a bouncled set of ,\ and hence a bounded set of X. There-
fore, creN"- ~fa. 

Since J\x-M:x=i\o:,-:\1,.,, Lhen the identity mapping I\",--+J\" 
in duces isomorphisms (fix of Hn(N a., moclM",' G) onto I-1,,(N" mod Mo., G) 
and 41x of H 11 (,'(,modM"G) onto ll11 (Nx_,modMo._,, G). Further, the 
following relations can be veriiied. 

for each pair o::, ~ER with a< ~-
Let S denote the set of all covering of A. \Ve have proved that 

the li mit groups of the Lwo inverse systems 

l H,,(N::,mod:.\Iœ, G), a.ell\, 

are isomorphic and the limit groups of the two direct systems 

are isomorphic. This completes the proof. Q. E. D. 

B y the aid of ( 14. ~l), the connecti vit y theory of a proper uni verse 
reduces Lo that of a locally Lounded proper universe. It happens 
to me that the whole theory of homology and cohomology of a topo-
logical space can be re-constructed in a more desirable form for a 
proper univcrse. For instance, we shall formulate a generalization 
of the Kolmogoroff duality theorem as follows. 

DEFINITIO~ 14. 11. - The i'f•eak relatù·e boundedness /n a subsel X.,_ 
o/ a un/verse X consists of the totalùy of the boundcd sets l3 of X 
n-ùh B cX_,_. 

ln particular, if X.,_ is a closèd subset of X, then the weak relative 
boundedness coincicl·es with Lhe relative boundedness defined in para-
graph 12. The following generalized K.olmogoroff duality theorem 
can be proved by the method of P. Alexandroff [2] with some trivial 
modifications. 
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TnEOREM 14. 5. - Suppose X be a locally bounded proper normal 
um~•erse, X 0 a closed subsetof X and X~ the open complement X- X 0 , 

both with the 1veak relati1·e boundedness. Then for each coefficz'ent 
group Gand each integer n~o, H11 (X, G)=Ü=H11+ 1 (X,· G) 
implies H11 (X0 , G) H11+ 1 (X_.., G). 

In particular, if X is a locally compact normal topological space, 
then (14. 5) reduces to Alexandroff's formulation of the Kolmogoroff 
duality theorem [2, p. 86] hy ·giving X the compact boundedness; 
for, in this case, the weak relative boundedness in X0 and in X-\'- coin-
cide with compact boundedness. 
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