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Singular integral equations of the first kind and those

related to permdtability and iteration

By W. J. TRJITZINSKY.

-

InTRopuctioN. — In this work we study the following related
_problems. )

L. Integral equa'tions of the first kind -
1 : ’ }
[ K@ oewd=fa) (ogrLyfirclal
0

where K (, y) is possibly non symmetric, is measurable and is such
that there exist correspondig linear functionals L., R, as staled in
section 2. :

1L, * The permutability problem‘
s [ p@ g de=[ g 0peprd,

where p(z, y) is given L, in'x, L, in y, and q(#, y) is to be found.

1. Inversion of Schmidt kernels; that is given a symmelric f(a:, )
L, in z, in y, to find a possibly non symmetric ¢(z, y) so that

- f(w,y)=f q(x, t)q(y, t)dt.

IV. The interation problem of finding a symmetric ¢(x, y) whose
_n-th iterant is equal lo an assigned symmetric f(z, y) (L, in z,
L, iny).
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284 W. J. TRJITZINSKY.

The term singular in our title is justified by the fact that in III, IV,
Jf(z,y)is a given function merely L, in = and in y, but not necessarily
L, in (z, v), thatin Il p(z, ) is L, in z, L, in y, but not necessarily
L, in (, v) and that in I, K (&, y) is stilless resiricled. Theregular
cases adequalely treated in earlier literature are those in which
f(z, ), K(x, ), p(x, v)are L, in (x, ). The present author has
not seen the regular cases of III, treated anywhere. .

The transition from the regular 10 the singular cases involves two

distinct methods.

A. Regularization of a given function f(x, ¥), Lyinz, L, in y. .
This consists in finding functions a(x), 6(y) (1) so that

1 At
__,_fi(x; )) I ,
/{: i az(—————m)b?()')(xd) <-+ .

Developments are then based on use. of the characteristic values and
functions of the regularized functions.

B. Spectral theory. — The background with respect to the
method. B is. given by T. Carleman’s (') work, especially in the field
of integral equations, in the sequel referrred to as C. Most of the
results in C are valid for symmetric kernels K(«, y) more general
than originally postulated in C; in fact, they hold for K(z, y),
L, in z (in y); this circumstance follows by another work of
Carleman (?). Whenever we make reference to a result in C, it~
will be understood that the result in question has been adapted to
kernels which are L,, separately in each of the variables, ore are
more general as in sections 3, 4.

In sections 1, 2 we adapt some of the spectral theory of C 10 non
symimetric kernels. '

In section 3 problem 1 is treated on the basis of method B (and of

(') T. CarLeMAN, Sur les équations intégrales singuliéres ¢ noyau réel et
symétrique, Uppsala, 1923, p. 1-228. ‘

(*) T. CarLeMaN, La théorie des équations intégrales singulieres et les
applications (Annales de U’ Institut H. Poincaré, 1931, p. 401-430).
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- sections 1, 2). In Theorem 3. 10 existence of solutions is established
when the sequence p, (3.15) is bounded. In section 4 the sense is
indicated in which Problem I can be solved when the sequence ¢, is
unbounded; for this purpose use is made of section 2. The regular
case of Problem I is well known; it has been studied by G. Lauricella,
E. Picard; in this connection the reader is referred to a book by
V. Volierra and J. Pérés ('), in the sequel referred to as (VP).
Cerlain dévelopments relating to the singular Problem I can be found

"in a previous work by the present author (*). The regular cases of
Problems I, II are presented also in a work of J. Soula (*); this work

- will be referred to as (S,).

Problem 11 s treated in sections 5, 6 on the basis of method A. —
Theorem 3.9 presents a very simple solution of an equation [(3.7),
(8.8)], related te the permutability equation, without any use of
characteristic values and functions. Theorem 6. 4, on the other hand,
gives a completely general (but more complicated) solution, on the
* basis of four sequences of characteristic function. The regular case
of Problem II has been solved by Lauricella [ reference may be found

“in (S,)]-
Problem 111 is solved in section 7 (Theorem 7.15) on the basis of

" method A. Under certain conditions the solution of this problem
satisfies a second order iteration problem.

Problem 1V, wzth n=2, is treated in Theorem 8. 19 on the basis of
method B. Problem 1V, with, any odd n, is solved in Theorem 9.14
with the ard of method B. - The combination of the two theorems enables
one 1o treat the case swhen n is even. It appears inconvenient to apply
method A to-iteration problems. The regular problem has been
solved by Lauricella [ cf. (S,)]. .

-

(*) V. VoLterma et J. Peris, Théorie générale des fonctionnelles, Paris,
1936, p. 308-310.

(*) W.J. Trurzinsky, Singular Lebesgue-Stieltjes integral equations (Acta
Mathematica, vol. Th, 3-4, 1942, p. 197-310).

() J. SouLa, L’equatton intégrale de premiere espece a limites fizxes et les
Jonctions permutables a limites fixes (Mémorial des Sciences Mathématiques,
Paris, 1936),
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1. Non symmerric KErNELS. — In this section K (&, ) is L, in ,
L,iny. We define K,(z, y) by the relations

(1.1) | Kulr, y)=K(ax, y) | wherever |K(z, )| Ln],
) l K,(r,y)==n [wherever = K(z, ) > n].

Let the un (@), vu(x), k=1, 2, ..., be the characteristic functions
associated with K,(x, y); thus

. 1
unk(a‘) = )\nkf K,,'(;l‘, 5) "nk(s) ds,
0

(1.2) .
k() = )u,,‘-f unk(8) Ka(s, x) ds
and
r__

Ui 2) = 12 f K, (2, 5) tu(s)ds,

. ' o

var() = )‘;’,,‘.‘[ E,,(.z‘, s var(s) ds,
(1.3) { ’

— 1
K, (x, s) =f K. (z, ¢) K, (s, ¢) dt,
A . .

E,,(x;s):fl K.(¢, z) K, (¢, &) dt.

In accordance with a remark in (VP; 306) the A will be considered
positive. In facl, if A is a characteristic value and u(z), ¢(x) are
corresponding characterislic functions we shall have 4+ u(z), & ¢(x)
*as characleristic functions for — A. If we admitted both positive and
negative characteristic values, the set of all u(¢) functions could not
be arranged as an orthogonal sequence. Each sequence (u.), (¥n:) i
arranged as an orthonormal sequence. The A, u,(x)are the charac-
teristic values and functions of K,,(w, y) and the A;;, ¢, () are those
of K,(zx, y).
In accordance with a device of Pérés (VP) form the symmetric
kernel. -
" H(x, y)=o (0<.r,y<1;1<x,y<2),
H(z, y)=K(z, y —1) (o<=,y—1<0),
H(z, y)=K(y, x —1) (o<z—1,y <)
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We define H,(x, y), as above, with K, in place of K; H,(.x, ») will
be symmetric. Let the yn, wau(x) be the characteristic values and
Sunctions of H,(z, y), with the sequence | sw..(x)) orthogonal on (0, 2),
. chosen so that

(1.4) fltv,’,k(z)dx:.-z.

It is observed that the v, consist précisely of the numbers
) S —dnty —lar e

to fix ideas we shall put

(1.4a) Y26 = — hns, Yokt =tk  (hk=1,2,...);

furthermore, it is noted that

__ | un() (o< x<1),
(340 w"’zk_l(x)_{ vk (£ — 1) (1<zr<a)
and
(1.4¢) - v, 2k(w)=' Unk () (o< <),

— Vak(Z —1) (<zr<a)y

Wa,ak—1(Z) corresponds to Ay (>o0) and w, ,(x) corresponds
to — Ag; clearly these two functions are orthogonal on (o, 2).

‘While in general H(z, y)is not L, in (, y), the integral

f_ H2(z, y)dx
0

exists [almost everywhere on (o, 2)]. Accordingly the theory
developed in C applies to H(x, y). - However, note must be taken
. that the second member in (1.4) is not unity
-Form . ’

2 q"nv(ft) q"nv()’) (fOI‘ )\>0),

0w <A

- 2 Yy (Z) Yav(y) (for A <o),

AS?uv<°

A5 8z, =
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0,(x, y|0)=o0, where

(1.5a) Yy (2) = féw,.v(.x).

As a consequence of C and of Carleman’s developments (cf p. 284)
there exists a sequence n; (independent of z, y, 1) so that the limit

(1.6) lim 07, (2, 3 | 2) = 0'(x, 7 12)

exists, for all (z, v) in (o L&, ¥y £ 2) except on a specific set E,
(independent of %) of plane measure. zero; convergence takes place
at all points of the diagonal y =« (within the square) except,
perhaps, on a set of linear measure zero. At points of convergence the
limit (1.6) defines < a spectral function™ of H(x, y). A particular
spectral function 6*(x, y| 1) is thus uniquely defined except on E,;
in particular, 0*(x, x|1) is uniquely defined for almost all x on (o, 2).
We write

[ Ou (x, ¥ M) =0,(z, 3i2), 0 (2, y | 1) =05 (z+1, y +1]}),
| 027 (2, | 2) =0 (z, ¥y +112), 02%(z, ¥ | })=04(z +1, ¥|D),

on (o<, y<1). On taking note of (1.4a), of the fact that
%ax >0 and of (1.5), (1.5a), one obtains

1.9

0. (z, J’Il)"—j :—1 2 Wa,2kmt (2) Wnk—a (y)  (for 2> o),

Ymak—1 < A

D wmm(@)wau(y) | (fork<o).

)~S Yn,ak

Thus by (1.7), (1.4b, ¢)

0 (x, y12) =—

00 |

; 2 nk(Z) tnk (¥) (2> o),
C(1ga) | 8z, y M) = ,L_'KA S
LY @) () (<o),
A<—hak
. LS on@en) - (>0)
‘ k<A . ’

(1.78) G (myIN=4 )
- — 2 Y, om() ome(¥) (A <o),

A S" Ank



and

(1.7¢)

 (%.7d)

It is observed that 0, “ is 0" with the u,, and the ¢, interchanged.
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; Z Uni (L) vne(y) (A>o0),
A <A
~1 2 — Uni(Z) vnk(Y) (A<o),

2
"S-lul

04y (z, ¥ | h) =

! 2 vnk(Z) uak (y) (A>o0),

2

)

FHCMIDEI

T a Z — enk () k() (<o)
)'5-'~ul

289

On the basis of .(16) we infer existence of four spectral functions
of K(@, y)

Ouu(x, y|A)=0"(z, y|}) =lim0%“(z, v|2),

1.8
(1.8) {0"»"(z,y|l):ﬂ'(x+l,y+|[).):limﬂi;""(.r,)'|).)

. and
(1.8a)

{ ger(z, y [2)=0"(z, y +1|2)=lim03" (z, y|2),
Ovu(z, y [ M) =0"(x +1, y[2) =1lim03*(z, y|?)

for o< x, y <1. Furthermore

(1.88) 65z, ¥ [X) =02"(y, 2| ),

In accordance with (C; 40)

ffH(w 7)8(@) h(y)dz dy -

=f_:;d>.fo’f0’o-<x,yu.)g(x)h(y)dxdy,

whenever g, hc L, [on (o, 2)] and

1.9) f-H_(.z')lg(x)]dx<'+ - [Hz(x)z['uz(x,y)dy].

If in the above we put

»

gz)=0 (1<z<2), h(y)=o (o<y<),

v (z, v | 2)=0v4(y, z|2).

4
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it is inferred that

&[ f K(r, ) g(x)h(t 4+1)dxdt
= -d)ff0"(.1‘,t+|1l)g(.1)h(t+|)dxdt.

—_—

As a consequence of (1.8a) one finds that

(1.10) flfo‘l\'(w. ) 8(x)h(y)drdy
=f_,dffe<x 710 g(@) h(y) dzdy.

whenever g, h€ L, on (o, 1), while |by (1.9)]

(1.10a) ["K'(.p)lg(.r)|d.r< © [K’i(x)zfle(x, t)a{t].

On letting
g(xr)=o (o< <), h(»)=o a<y<ea),

we deduce T
' foifo’li()s ) g(t+1yh(y)dedy
=[:%d;\.[lliﬂ'(t-kl,yll)g(t—i—l)h(y)dtdy.
Thus, in view of (1.8 @), (1.9), one has
(1.11) f f K(y, 2)g(x) h(y) dzdy

=[" dxff0‘"(w,all)g(x)h0)dxdy

whenever g, hC L, on (o, 1), w/ule [by (1.9)]
(1.110) f K'(z)|g(z)|dxr <+ o [K”z(x) —f K2 (z, ¢t) a’t]

Similar to the theorems in (Cj; 43) are the following results
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previously. indicaled by the present author (') and really a conse-
quence of (1.10), (1.114).

The relation
) [ K ogtode= [ 3d, [0t 00 g0 de
holds, whenever g(¢)cL,. Similarly

1 » 1
’ (1.13) . f K(¢, J;)g(t)dt::f %d;.f Oz, ¢12) () dt
[] —» [i4 !

o R 1
=f_ %d‘kf O v, | 2) g () de

Sfor all g(£)cL,. It is to be noted that (1.12), (1.13) are limits of
the same formulas with K,, 0, in place of K, 0.

It 1s known [c¢f. (C; 47, 19)] that the solutions, cL,, of the
equation

! 2
(1.14) ' f H(z, y)9(y)dy=o
0
form a ¢ linear closed set ”’; thus there exists-a ¢“ base ”
(1-149)/ . " ' %(-ﬂ’f‘), CP!(w)r MRS ]
which may be chosen as a sequence orthonormal on (o, 2), so that
for every solution ¢ of (1.14)thereexist numbersc,, c,, . .. for which

(1.i48) - p(@) ~Dag(@),  Fei<+wx,

with ~ Jénoting convergence in the mean square. In accordance with
(GC; 48)eyery h(z)c L, [on (o, 2)],is expressible in the form
-~ N ’

: s ‘
h(z)~ ¥ cyo, -+ dy | 0(x,y| M)k d N, ! .
K.f‘). ;(“‘,)' EC‘P (z) f_l )[ (z, |\ h(y)dy  [asN, !> +wo]

- (1) W- J. Taarzinsky, Singular non linear integral equations (Duke Math.
Journal, val. 11, n° 3, 1944, p. 517-564); cf. in particular, p. 518-521.
.+ 7 Journ. de Math., tome XXVI. — Fasc. 4, 19{7. -38
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Also, with k, fc L, [on (o, 2)], on has : '

2
Ql
f fh dr :Lﬁ,hp —2 ",anph:,
¢ r ra

o a [ f "0(2, 3 10 f(2) h(y) de dy,

where

s=[ forapards b= [ h@) g (2)ds,

H/'.'/:f d, [ f 0°(ry ¥ 12) @p(2) 94 ()) dz dy.

We observe that, if ¢ is a solution of (1.14), the functions
(1.13) u(x)=19(x), v(x)=¢(x+1) [on (o,1)]

satisfy the equations

(1.15a) f u(xr)K(r, y)dr=o, f K(z, )')v(y)d_)'%o,
respectively. Conversely, if u, ¢ are solutions of (1. 15a) the function
?(x) defined on (o, 2) by the relations (1.15), will constitute
a solution of (1.14). In view of these considerations it is seen that
the kernel H(x, y) is closed [that is, all the ¢,(x) are zero] if and
only if K(x,v) is closed on the left and on the right. In this
connection closure of K(z, y) on the left (right) signifies that every
solution u[v], CL.,, of the equation :

o

f u(x)K(x, y)dz =0 [r K(z, y)v(y)dy:o]

is necessarily zero.

With the aid of (B) and (1.8) we conclude that for f, k; cL on-
(o, 1), one has

(1.16) ffhdw_prhp ZHpva ; N

+f_.d1ffeuu(x,ylx)f(d)h(y)dwdy,
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where .
1 1
s f},:f S(@) up(x)de, /c,,:f h(r)u,(r)dr,
1.16 1
( “ . f up(x)K(z, y)der=o
[Hpyasin (B); w,(x) =¢p(.r) on (0,1)};
moreover,

(1.17) f' Shede = hofy =3 Wy frhy

4%

/
» 1 1
+f d"ff"""'(f,.':7~)f(w)h()')drfb»
—m 0 [}

1 1
j;,:j S(x)vp(x)dz, /:,,:f h(z)v,(r)dz,

where

(1.17a) \
[ K@ e dy=o.

)

In « we let h(x)=o0 on (1, 2), obtaining
Hm 'f-

NG J,

Tl

, = lim f
NS,

h 1 N ! 1
+f I—chvv(z) —f d;f 0vu(x, y12)R(y)dy| de)=o;
0 1 -1 [}

necessarily each of the terms in {...}, above, being positive tends
to zero; accordingly

N 2

[N 1
h(z) .—-Ecvcp,,(‘z) —f d)_f 0 (ay M) R()dy | da
1 . -1 0

N ! !
/L(w)—Zc.,u.,(.L')—f d;‘/ Ouwe(z, y(2)h(y)dy| dx
—1 0
1

= N Al 1
* h ~ v Uy -dl L Qu.d ,)h Yd
(a*) (2) 2cu<w)+f_l f (@ y M) dy

and, similarly,

. ~ l: . ! ’ 1 '
@) @~ Dan@+ [ b e o),
1 o= °o -

-
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the two formulas being valid (for some c, for wich ¢}+c;+. .. con-
verges) whenever h(x)CL, on (o, 1).
It follows, further, that

(1.18) ffhdx_[ f f0""(.1-,)!))f(x)h(y)da:d),

whenever K (, y) is closed on the left [ cf. (l .16a)]. Also

({.19) I‘fh dw:g[:d;.ll[lﬁ""'(‘v, N f(z)h(y)dzdy,

if K(x, y) is closed on the right [ cf. (1.17a)].

The above, incidentally, implies that 0“«(z, y|)) s a closed spec-
tral function (that is, leads to a relation of Parseval type) if K(z, y)

is closed on the left; 0°*(x, y | \) is a closed spectral function if K(z, y)
ts closed on the right.

2. NoN SsYMMETRIC KERNELS ( CONTINUED ). — In this section' K (x, y) is
measurable, possibly non symmetric, such that there exist linear func-
tionals (of the type previously used by Carleman)

Le(@le-2)y  Ra(n].. D -

swwhere £, v are parameters of any ‘kind, with K,,(a;, y) from (1.1), one
has the following

(2.10) © Le(§1K(z, ) c Ly iny;
(2.3) ‘ | Lo (5 1 Ka(, 7)) | <7(EIP)S

- where y(&|y) (independent of n) is.L, in y ’
(2.30) o lim Lo (2| Kn(z, }))=L.t(z| K(z, 7));
(2.60) limLe (£ | fu(2)) = Le(§1£(2)),

when f,(z) — f(«) (wedk convergence in L, on (o, 1)

(2.5) f Lz(E | Ka(, 7)) () dy = tx(z

f K,.(w,'y)?(y)ci.r)
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forallpcL,

(2.1°) R,(an(a:, y).) clL, inx;
(2.20) | Ry(n1Kntz, )| < 3(ni),
where e(n|x)is L, in z;

(2.3) lim R, (0| Ka(2, 7)) = Ry(n| K(x, »)),
(2.4%) timR, (0| fu(3)) = Re(n1 £()),

whenf,,(;»_)f on (o, 1);

[ ¢<z)Kn(w.y)clr~>

(2.5;") fq,(x)Ry(n[K,,(x,y))dwzﬂy(‘n

~

“for all ¢ c L,.
When K (z, y) is symmetric one may take

R(n]...)=L(]I...).

L +(E|K(2,.0)), R, (n|K(=, y)) may be.non m('asumble in the para-
meters £ .

DEFINITION 2.1, — We deﬁnea Sunctional T, ("lh(x)) where h(x)
Is defi ined Jor o Zx Z 2-as follows
“(2.1a) ° ‘Tl.(c |h(#)) =Lo(E1 (@) + Re(n] k(1 + ),

where { stands for (E,1)); the above is stated only forsuchh(z)(oLxL2)
Jor which the two terms in the second member exist.

We observe that T, is a linear functional. As a consequence of
the definition of H(x, y) (as given insection 1).
(2.2)  Tu(tIH(z, ) =R:(nlK(3,2) . (yon(o, 1),
- L(¢H(z ) =L(tIK(@ y—=1)  (ron(s, 2);
(2 2) also holds with H,(z, y), K.(, y)in place of H(z, y), K(z, y).
By (2.2), (2. 1,)-(2.5,), (2.1°)(2.5°) one has for z, y on (o, 2)-
@n - - To(¢IH (2, 9)) C Ly iny;’
(2.11) - | T=(81 Ha(2, 3)) | <a(212),
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where

2(%15)=3(n1) (3 on (o, 1)),
a@ly)=1CEly—1, (yon(r,2)
and a({|y)isLyiny
(2.111) |i:.11..(¢ | Ha(a, ) =Tt H(=, 2))5
(2.1Y) m T (2] fu(2)) =Te(21f(2)

when f.(x) > f(x) on (o, 2)

2.V) fT...(:m.(w, _)'))\!»(y)d}-zT_r(z‘f H,.(m,nw)dy_) .

for all $(y)CL,.
~ Corresponding 1o the equauon (1.14) we have

(2.3) ) f T.(2 18, ) #00) d =o.

The kernel ) : .

' T(c,y)=Tr(:| H(z, )).

has a ‘¢ base” consisting of a sequence of functions { :p,,(a:)} (v=r, )25 ),

orthonormal on (o, 2), that is, '

(2.3a) [T )y =0

while every solution ¢(y), L, on (o,2), of (2. 3) is representable in

the mean square ds ‘ .

(2.3b) ‘P()’)NECV‘PV(J) (Qf+¢'§+-1-<°°).'
With e,, ¢, denoting measurable sets on the intervals

CeZrL2,  0Ly<L2,

“respectively, we for ' ' -

(2.4) (el e,m—ffe (z, 7)) dzay.

ex v ey

i
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where 0, is from (1.5). One has
. , .
Q, (¢, €, |2) = 2‘

*es,

/.%an(d‘)d.z:' ql,,.,(_)’)d)’ ().>()),

°<Tnv<'
Qe ey N=— 3 f\p,,,,(.r)(l.t YD)y (h<o).
A0, €= v
Thus , :
Qe eﬂhéZ( f up,,v(x)dx)’):( Il nP,,-,()')d)')’-
Accordingly

Qi (ch ) 1) L m(ey) m(ey)  (n=1,12,...);

here m(e) = measure of e. The above inegualities signify that the
absolute contiduity of the additive function Q, of two sets (¢, ¢ ) is
uniform with respect to n.- We infer existence of a sequence (r;)
(n;— o with j) so that the limit

[(2.5) , - limQ, (€, €, |A) =Q(e, €, |2)
. nj
" exists (n; independent of the sets and of A); Q is additive and absolu-
tely continuous in the sets ¢, €, ; one has
e 1
| (e, ey 10 | < [m(ey) m(ey)]*.

Let ey be a measurable set in the interval o < <1; designate ,
by .1 the set of points 1 such that z is in €z; e..q Will be a set
‘on the interval (1, 2). Similarly we define sets e,, e,,,. We write
2 6)\ Q¥ (e, ey | 1) =, (ex, ey | 1), (e ey | 1) = (s, € 41| 1),

,,. - | Ky (ew) e | A) = Q, (e, €yp1 | ;‘)7 Q;”(e-l': ey | 2) =8y (e.4y, e, ! 2),
_and By(é.5), in the limil, '
2 6a) (e €y | 1) = R(ex, ey |D), - Q%(exeyjh)= (e, €541 |R),
o 9"”(9:0 ey [A) = 9 (ex) ey+1| b, Qe ey | M) = Qext, ey |R).

By (2 4), (’l ba), ('l 40), (1.4¢)itis inferred that
(2 2)- ﬂ“"(el, ey |A)_ff6“"(x,y|1)dxdy [ef. (1.7a)].

ezvey
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With suitable adaptations most developments in (C; 130-146) will
hold for Q; in this connectign the symbols ' -

d d
F-'I-.', (F’ “ ey Q‘

when applied 1o an additive function of sels, are to denole ¢ deriva-
tion " in set-functional sense. N

We shall now state without proof a number of formulas [ cf. (2.8)-
(2.8¢), below ], closely analogous to certain resulte in (C; 130~143)

(2.8) (f 11(7.)(1-,\‘/‘ &(x) a;f % Qe €)13) h(y)dy] dx
2 e .
' ::f g(.r);.; [f a(A)d,f d Q(el, e, |7\) h(y) dy} d.z; ‘

:I-g(.r)%% ., de‘ -I"a(7)d sz(el,e,m]h(y)dy}dx ‘»

it

& hcL,y on(0,2); —ae <M< W< 4o; a(A) of bounded varia-
uon for A\, W N5

* - 2 ‘ '
(2.8a) f d~,~f Iz(a:) [c_l.—tf %39(0,, ey | A):h( ¥) dy] da'éf h*dx
—_—» o 1) o . s

for hc L,, Q is defined o be closed if (2.8 a) holds with the eqﬁalfty‘
sign for all ACL,; if Q is closed one has

(2.85) f d,f £(a) [dxf 7 e o] »)h(y)dy] —f sl do .
forall'g, hc L, on (o0, 2); if Q is closed one has
g e . _
=g [ af g’;gge.c, e 1)) dy

(for almost all x) for all hcL,; ‘
there exists a function F(«x), €L, so that

. 1, at T
. (2.8¢) - F,(x_)_'__—;_.f(_:é)—d%f,dxvf 0%9(«:1, e | f(y)dy,

—->)F(:z:) (as l-—>oo;'hllf¢L,); .
(& . T
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the function F (&), involved above, satisfies

(2.84) [ Te(x1H@, 7)) F(y)dy =o;
if
(2.8¢) [ (x5 ) ety dy =o

has no solutions, CL, on (o, 2) withf ¢?dz >~ o, then  is closed.

We shall now prove the following analogue of (C; Theorem 1V,
p- 48). -

‘Tueorem 2.9. — With {9, } designating the base introduced subse-

quent (2.3) giwven h(x)CL, on(o,2), there exist c, so that on writing

N
(2.9a) gn.(2) =X ev9n(2) + hi(2),

v=1

d : .
(2.95) ‘P'<~’”>=d—xf_,d‘h[fo, %suer,e,mmndy],

we have
(2.9¢) gn,i(z) ~ h(zx) (on (0,2);asN, > )

+ If fis also L, on (o, 2) one has
2-94) f-f(x)h(w)dw:zfph”_szquhq"'f‘dlff(x)
4 0,9 — °

. d 2 p)
XI-E.'EI ;}-,9(%, "’J‘M)h(}')d}’]dz’

with e

@9e)  f=[ @ u@dn b= h)o,(a)ds,
) [ .
- (2.9) Hpq=f_.”'dxfo %(f) [%[;,;ﬂ(e.r, e,|1)cpq(y)dy]dx.

By (2.8¢), (2.8d) for some H(z), CL,,

h(w)—qn(m)(—:)_H(z)A (as ‘l—-'yco;.zon (o, 2)),

" Journ. de Math., tome XXVI. — Fasc. 4, 1947. 39
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where

[ re(x18(@ ) By dy =o.
Hence by (2.35)
H(zx) ~20v Py(x) (on (o, 2))

forsome ¢, such thatc}+ ¢} 4. .. converges. This establishes (2.9c¢).

We shall now prove that there exists a function ¢,(x), CL 2; SO
that

(2.10) Ef dla‘yg(e-ry ey | 1) gu(y) dy ~ ty(x),

ZH‘”’ Pp(x) ~ ty(x) (on (o, 2)).
P

As a consequence of (2.9c¢), applied to A(y )= ¢,(y), we obtain

N

(2.11) Zc,,y ov(z) +4f (2) ~ ¢p(2) (as N, /—>o; on (o, 2)),

V=1

(some c,, ), where
YAl *
W=z [ dx[f 5 @(en eyll)%(y)dy];

W(x)(—:)ﬂl"’(x),

by (2.8¢)

where {?(x) is some function CL,; convergence here is, in fact, in
the mean square. In view of (2.11)

-

om= f (ep(2) — 47 (2)) 9v(2) d=
=6v,,-——limf’¢f(a:) oy(z)dz

_av,,—lnmf cpv(a:)[ f

=0,,— hmf dy cpv(x) [%

H
R(ex, ey |2) 9p(y) d)’] dz

f 9
o O

o
fo (—’;Q(e_,, eyl)\)q’p(.}')dy]dx’
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where 8,,=1, &,,=o0(vs£p). Thusby (2.9f)

0pv= 6VP— vao
Hence (2.11) becomes

N .
— D Hy,90(2) ¥ Y (z)~o  (asN, l>w);

v=1

(2.10) will follow.
We observe that ¢, in (2.9a) is the v-th Fourier coefficient of the
function H(«) introduced subsequent (2.9 /). One has

cvzfo H(x)cpv(w)dlei}n[ [h(2) — Y(x)] ou(2) d

2
— hy— limf U(2) 9o(@) dz = hy— lim (),
{ 0

where

~2 ' ] 2 .
()= | ?v(w){;i%fldx[f 78 eyll)lg(y)dy]}dl

- 2 l 2
:f h(y)[-gy-j‘ld; f %9(&;, e,ll)cpv(x)dx]dy,

Now, by (2.8¢), (2.84)

d £ 2 9
d_y./:,dlfo oz ez ex|2) 9y (2) d

converges weakly (as / - ) to the function

rd

7\»(y)——-a,i;fmdxf (—;’59(%, eyl‘l)cpv(.z')df:.
Therefore
ev=h— [ (N () dr.

In view of (2. Io)-

' N
2
(2.12) cy—=h,— ligl[ h(y)Z Hyp 9p(2) dz = h.,—zﬂyph,,.

p=1 P

.~ With ¢, .(x) deﬁned‘by (2.9a) (N=n, {=n) we form the



3o2 W. J. TRIITZINSKY.
integral

® N °
fo f(@) gun(@)de =Y e, fo + f f(@)

g LA f g nmrs]
By (2.8) and (2.12)

f /(w)qnn(w)dw—2<hv Zva"p>fv+ f A f f(2)

X[(—i‘;f 3}‘,9(3::: e,-])‘)h(y)dy]dw.

Since, in view of (2.9c¢), ¢, n~ k, in the limit wé obtain (2.9d).
This establishes the theorem.
If 9, cL, on (0,2), is a solution of

[ re(ziH @ ) o dy =0,
then the functions \ -
(2.13) u(z)=9¢(x), v(z)=¢(xz+1) - (x on (o, 1)')
satisfy the equation

(2.14) f [Re(n1K(y, #))u(y) +Le(E1 K(z, 7)) 0(2)] dy =o.

From the above we conclude thatif R, (1] | K(y, x)) orL, (E | K(x, y))

is not closed then T, (C | H(z, y)) is not closed.
In (2.9d) we put

f(z)=h(x) (on (o, 1)), f:hio~ (on (1,2));
with the aid of (2.64) it is then inferred that

N ff’(w)d‘”“‘zfp ZHprfq'*“f dl/ S(z)
(2.15) { k[%ft——sz (e eymf(y)dy]dx, -

fo= f fopdw.
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By virtue of (2.84a)

@16 [“af f(w)[diy %Q"“(e.r,eyll)h()')d}'ldwéf S(2)di

forall fcL,on (o, 1). WhenQis closed [that is, when TI(C|H(.1', )
is closed in L,] then (2. 16) will hold with the equality sign.

3. THE FiRsT KIND EQUATION. — Suppose f() subject to

HvrothEsis 3.1, — On writing

N 1
(3.1a) fur= f f(@) une() dz, -
we have
(3.15) p,’,:ZR,z,kf:n<+oo (n=1,2,...).

By the Riesz Fisher theorem we infer that there exists a func-
tion h,(x) such that as a consequence of (1.2)

£3.2) ,ln(.'l‘) Nzlnifni v,,i(.z’), f ’h,,(:v) Vm(l‘)d.l‘: )‘,,1/;,1.
" [

The function ~

(8.2a) | Fa(a)= f Kn(@, 5) ha(s) ds — f ()
has thelproperty
(3.25) fIF,,(w)u,u(w)dx::O (i=1, 2, ...)‘;
. we also have 0 :
L (B.20) fh:(w)dw=e:.
Now by (2.5,) o

La(¢] Fa(2)) :f Lo(£1Kn(2, $)) ha(s) ds — Le (51 /().
Hence, as a consequence of (2.2,),(3.2¢), °

“(3.3) ‘1Lx(s|F;<x>)|éle(alf<w>)|+ f T(E15) | ha(s) | ds
=| La(E17 (@) [+ Y ©)pm
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where
(3.3a) y*(g)_—_f T2(E| ) ds.
If the () are bounded,

Pl p <+ (n=mny, nyy .. ),

then by (3.2¢) one can choose a subsequence of (h,,(a:)) , say
hp(z), hp(2), ...,

converging weakly (in the space L,) to a function A(z),

(3.4) h,i(z) > h(z)  (as ni—>o).

In view of (2.3,), (2.2,) and (3.4); on making use of a theorem of
Carleman (C; p. 20) it is inferred that the limit

(3.5) limfiLx(UK,,(x, ) h,;(s)dszfle(glx(w, $)) h(s) ds

(asn=n/—> o). Hence by the formula preceding_ (3.3)

(3.6) limLy(Z|Fa(2))=F'() Ef L.(£1 K(2, )) his) ds — Lo (5| /(2));

moreover, by (3.3) ‘ \

IFE) < Le(E1f(@) |+ Y E)e  [of (3.3a)].
We write \

(3.7) Fn‘.,(m) _—;f Kn(z, ) hay(s)ds — f(z), - I}n,,(s) :Z inifn,v,,,(s).
. ° ~ i=1 .

By (3.2)

hyy(8) ~ ha(s) (as v—> );

hence .
lim Fp, () —_-f Kn(, 5) ha(s) ds — f(2); -

in view of (2.24a) -~
(3.7a) . F,,(a:):li:nF,.,,(z).
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By (3.7) and the first relation (1.2)
Fu(2) = fin(@) = (@), fas(@) = futtn(@);

=1

the limit

(3.76) lm fiy(@) = f1= 3, futti()

exists in the sense of ordinary convergence ; moreover,
(3.7¢) Fu(z)=fu(z) — [ ().

In view of(5.7b), even though the sequence (u.,(z)) (i=1, 2, ...)
may be not complete, one has

S/ @ de=Y fi
Hence by Bessel’s inequality one has
3.8 . | S/ i @yde il P do.
As a consequence of (3.7¢)

- .lei(w)dx:f'f;(w)FAx)dx—flf(x)Fn(x)dx

and

-

fF:(x)dxé jfif?(x)da: o'F:.*(x)dx(

1

: +{folfz () dz OIF;’(w)dx{.
Thus by (3.8)

RN [fl_F?,(w) dx]%éz[flf*(w)dx]%< w0,

where the second member is independent of n. Hence there exists a
function F(x), €L, so that for a sequence n;

(?-9\) ' Fn,-(-’v)(-j)F(.t) (as nj—> o).
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We choose (n;) as a subsequence of (nJ) [from (3.5)]. Thus by (2.4,)
and (3.6) one has

Ll(zu‘(w))—f L.(§| K(a, s))h(s)ds— Le(E1/(2))-

We form the expression
] 1
tgf= [ j e [ Fato) 0 (@ 10 e,
where < 3. Now, in view of (1.7¢) .

0 (e, y A+ ) =02 (2, y D=2 ¥ um(@)ouly),
A Ak <A+-A
foroZA <A+ Aand
B (e, y A+ A) — 0 (2, y [N =—2 N um(@) oml(y)

A= 2k <A+A
for A< A+ ALo0; accordingly

]gﬁ: ! f Fur(x) unk(z) vni(y) dz
a<‘A,,5<B

for o < a < B, as well as for « < B < 0; inasmuch as the A,,5£ o, it is
seen that the above formula holds for all «<f. Thus, in view
of (3.2b),

I:ﬁ: o, I;>+>=o.

Hence by (1.13), applied to the kernel K,(z, #) and the func-
tion F,(?), one has

len(t) K.(¢, y)dt =I;=+>=o0. '
Consequently, F, being L,, by (2.5°) one obtains
‘f Fa(0) Ry (] Kn(, y)) dt=o.

By virtue of (2.3°), (2. 2"), (3.9) and the theorem in (C; p. 20), in
the limit we obtain *

f F(2) R,(n~|K(z,y))dt='o.
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We have proved

Turorem 3. 10. — Suppose f(x) satisfies Hypothesis 3.1, with
PrLpi<< .
One can then find a function

h(s)c L,  [cf (3.4), (3.2)]
so that '

(8.100) f Lo (81 K(2, ) h(s) ds — Lo(£1 f(2)) = La(| F(2)),
where F(x) is a certain solution, € L,, of the equation

(8.10) le(t)Ry(MK(t,_y)) dt=o.

Note. — If R(¢, n) = RJ(Y] |K(z, y)) [which by (2.1%)is L, in ¢]
s closed L,, that is if '

f Y(&)R(L, n)dt=0, (¢) C L,
implies { = o, the function h(s) in the theorem will be a solution o f

(3.10¢) f L,,.(EI K(z, s))h(s) ds:Lx(E|f(x)).

-

If, in addition, L(E, s) =L, (EIK(w, s)) [which by (2.1,) is L, in 5]
is right closed L, (that is, if

f L(E s)9(s)ds=o, 9(s) € Ly,

implies ¢ = o), the solutwn h(s)of (3.10¢) will be unique in the Sfield
of solutions L,.

A. THE CASE 0F uNBOUNDED (p,). — We shall establish the following

Taeorem 4. 1. — Suppose f(x) is such that pi<—)—o¢3[n= 1,2, ...;
cf. (3.1d), (3.1a)], the sequence (p,) not being necessarily bounded.
Suppose T(L, y)=T. (ClH(w Y)) (Definition 2.1) is closed. The
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equation

(4%.2) I(a:lh)sf(x):flK(x, s)h(s)ds=o

can then be satisfield in the following sense. There exists a JSunc-
tion h,(s)C L,, say

(&.2 a) ha(s) ~27\nkfnk Vnk($),
k

so that the rntegral

(4.2 b) /ll;",(:rlh,,)d.r [I,,(.z‘lh,,)sf(m)—flKn(x, s)h,.(s)'ds] ‘

ts arbitrarily small for n suitably great.

On writing

v
Ry (a?) :Z )‘nlcfnk vnr(x),
k=1 °
we obtain

hyv(z) ~ k() (as v— ),
Hence

(4.3) limf’K,l(x, s)h,,:v(s)ds-:fiK,,(x, $) hu(s) ds.
Now

flx,.(x, ) b () ds =3 dus "Kn(, 5) on(s) ds
0 =1 X 0
and, by (1.2),
f Kn(z, §) hnov(s) ds:ankunk(w);
0 k=1
in view of (4.3)
(4.3q) f Kn(@, 5) n(s)ds = 3 fut tni ().
0 k

It has been noted before that the series last 'displayed converges.
‘We observe that _ - '

D fuktenk ()
k

2

Z )\nk fnk
k

"ot uki(@)
k

unk(x)
Ank



SINGULAR INTEGRAL EQUATIONS OF THE FIRST KIND. 309
and, by virtue of (1.2) and Bessel’s inequality,

- 2 1 2
thk lflzk(x) éP:Z[f Kn(x, s) Vnk(s)ds] é?:na'
k k 0

By (4.3a)
Li(@ | ha) = f (@) — 3, frtink(2)-
k

ITence
L(z|hp)dz= | fidz— D fir
jo‘ x X j; X ; P

Accordingly, the theorem is proved if it is established that for
some n, < n,< ... one has

(&.4) ume;,,k:f frdz.
I 0
Now by (1.74)
Bu(z, y |+ A) =08z, y N =5 D unl(@) um(y),
A <A+A
foro ZA <A+ A, and
Bu (2, y A+ A) =02z, y I =2 N uml(@) wa(y)

A=Ak <h+A
when A <A+ A_o0; hence

f f 04%(2, y | A+ A) f(2) f(y) do dy

i

_ f f 0Lt (x, y | N) £ () f(y) dedy

=2 ¥ fu (e£i<d+d),
2157\,.1,<A+A :

é 2 Sk A<Ai<ALo).
TN =M< A+A

Accordingly .
[Taf [ oy i@ ) dady

=[ idx [ 1 f 10:‘.'"<w,yll)f;w)f(y)dxdy=§§j;k.
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Therefore as a consequence of (2.7)

@s) Jrn=[ [ [ 0@y @) 1) dody
=) af [
° ' d (' —
=[ af f(w)[;x [ aeuen eyil)f(}.')dy] 4w = by.o.
In view of the concluding statement of section 2 and of the assumed
closure of T(Z, y)

4.5 a) ff*da::f”dxf f(x)[%:f %9““(e.z,e,~|l)f(y)dy]dx:b“.

By virtue of (4.5), (4.5a) and Bessel’s inequality we have

bn<b..

Hence the sequence (»;), involved in the definition of O, can be
chosen so that

limb,,i,,b: v, v=b,.
nj

Il v==5_ the desired relation (4.4) holds. 'Assume now the con-
trary,

(%4.6) ’ v==b,—2¢ (somee > o).

Since the integral in (4.5a) over (— w0, ) converges, we have

0Lb,— bi<k,

4.6 ! 1 1
(%69 =b,= [af f(x)[dii [ o ten eyll)f(y)dy]dw

for Isufficiently great. We recall Helly’s theorem, according to
which

b b
limf c(x)d¢n(x)=f c(A) d(R)

[finite interval (a, b)], provided ¢(\) is continuous for a =2\ b,
$u(X) > ¢(2) and Var. §,(A) £ A <+ . Thus

' ! 1 d (9 . o
(4.6 5) llntjn _zd)‘»/o‘ f(x)[%/o‘ -‘Tyﬁ,‘, (ex, eyll)f(y)dy]dx_.bl,
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We write

(4.6¢) rn,1=<[_l+fl°>dxflf(w)

d o
> [J.—x[ @95‘;“(% ey-ll)f(y)dy] dz.
Now .

t 1 1
d d
bn,a=[1dx[ f(x)[% i 3;9:“(%» “’yll)f(}’)d}’] azx + ra;

thus, in view of (4.6b) and the existence of the limb, ., it follows
that the limit

Iimr,,I,: ri>so
n ' -
j

exists; by (4.6) one has

lim b,,,,,: 1)1+ ri— b., — 2E&.
nj

Since ;> o it 1s inferred that
. b b, — 2¢
and
2e Zb,— by,

which contradicts (4.6a). Thus(4.6)isimpossible and the Theorem
is proved.

. CoroLLARY 4.7. — The conclusion of Theorem 4.1 sull holds when
T.({|H(=, y)) i not closed, provided f(z) is orthogonal on (0,1) to
every function ¢,(x)(oLxL1) [<pp(x) from the ¢ base” of
T.({|H(z, ¥)); ¢f- the text after (2.3)].

We repeat the developments up to (4.5). In place of (4.5a), as
a consequence of (2.15) it is inferred that

(LS)_ f1f2 d-"’—_—Zf;—Zwapfv

P P9

+\[-:dk[' f(x) [%j; Ed;guu(e-‘m erl)‘)f.(y)d}'] dz,
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where

(%4.8a) Sr= [f(x) 9p(x) da.

By the hypothesis imposed on f we accordingly obtain
fr=o (p=1,2,...). -
Thus (4.5 a) again holds and the reasoning given subsequent to (4.5a) .

continues to be valid; this demonstrates the Corollary. -

Tuacoren 4.9. — Let f(x) be such that o, < o(n=1, 2, ...), the
sequence (92 not being necessarily bounded. Wedo not assume closure

of T(L, y). There exists then a functional T| [, such that
(4-9a) o£T[f1£Qlf),  QIA=D/1— D Hufifi
p Pq

~

(fpy Hpg from (4.8a), (2.9f), so that the difference
(4.90) [ ity de =11,

with h,(x), L,(x|...) from Theorem 4.1, is arbitraridy small for n
suttably great. o

We note first that Q[ f] > o, inasmuch as in (4.8) the integral
displayed in the second member cannot exceed the first member, as a
consequence of « a generalized Bessel’s inequality ». As in the proof
of Theorem 4.1, it is inferred that

(%.10) (z|h)de= [ fde—N fo=[ prdz—b,.t>0)

/ Jprae=Zsu= |
[, . from (4.5)]. Now by Bessel’s inequality and (4.8) -
(%.10a) b,.,,éf frdze=Q[f] + b.,

where b_ is the second member in (4.5a). Thus forsomesequence(n;),
for which limQ,;= Q, the limit

(& 11) ’ ]imb,,i,w::g'

n, ) =
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exists; one has

v<Q[f] + bu.
Since b,,,=r,,+b,,, in view of (4. 66) we conclude that the limit

limry =r;
exists. Inasmuch as >0, l
0LbiLbi+ri=vZLQ[f]+b.
On letting / ~ oo it is deduced that
(%.12) 0Lb,ZvZQ[f] + b..

By (4.10) and (4.11)

lim | 12(z|h,)dz :f Sfrdz —»v =T-ms

here, as a consequence of (4.12) and (4.10a),
(4.12a) o T[f]=Qf]+ bua—v<=Q[/].

.The theorem is accordingly established.

CoroLLARY 4. 13. — For the functional T f] of Theorem 4.q one has

(4.13a) T(/1=Q[f),
provided
(%4.13 b) ...2‘)\ ok far LTt <—+ (some n > o).

Note. — The condition (4.136), with <1, is less stringent than
that involved in the requirement that p3 < p? <+ .
‘We have

ra= X fix  [of (4.60)],
-k

‘where the prime over the summation symbol indicates that the sum
is taken over all those values of k for which the A, are on the
interval (/, +). One obtains -

rnz—zlnkfnkl"ké[zlﬂf;k] [Z{g@k] "
oo

——
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In view of (4.1306) and since A, >/, it follows that -

1

r,.,zéfl""[zfﬁk]iéfl‘"[Zfik]iéfl"‘[ f I dw’]?-
k )

k

Thus r, ; tends to zero, with -Il-, uniformly with respectton. Together
with (4.60) this implies

lim b,,l.’°° =b,;

that is, v of (4.11) is b_,. The conclusion of the Corollary ensues
by (4.12a).

8. Tue perMuTaABILITY PROBLEM. — We shall now investigate the per-

mutability problem referred toin the introduction. 'We thus consider
the equation

(5.1) f p(, 1) q(t, y) d :f gz, t)p(t, y) dt,

where p(x, y) is a known kernel such that

(5.1a) p(z, y)cL, (inz), p(z,y)€kly (iny),

while the unknown ¢(, y) is to be found subject to the properties
(5.10) g(z, y)cL, (inx), q(z, y)cLy, (iny).

Use will be made of

Derinition 8.2. — It will be said that a function h(x, y) is regu-
lar [a, b] is )

' ‘hz(x’y) ‘ ' 1h2(x7.}')
(5.2a) [A/o‘ 2 (2) dzdy < +o, [[dedy<+w.

In the sequel we shall always choose a(x), b(y) so that
(5.26) a(z)>1, b(z)>1.

A function h(z,y)C L,-(in (z, y)) is regular [1,1].
Every function A(z, y), such that

h(z,y)Cly (inz), h(z,y)cLy (iny),

is regular [a, b] for a suitable choice of a(x), 6(y); in fact, on
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writing .
- L] M

F(w)zlf W (a, y)dy.] , Lzm:U h=<w.y>dx] ,

it is observed that

f f h? (x’y)dxd) f R (2) a’(x)

‘h’(w,}’) o 3/
fo | Ty D ~fu'—'mb'(y)’

" so that one may choose for example

_) 1 (when h(z) <),
a(x)_{ k(x) (when h(z)>1),

1 (when h(y)<1),
b(y)_{ h(z) (when h(y)>1).

hhH

We note the following. Given functions F, G of z and y, €L, (inx),
cL, (in y), a pair of functions a, b can be found (the same for F, G)

so that F and G are each regular [q, b].

‘Suppose q(x, y) is a solution of (8.1), subject to (5 1b).

We

think of this function substituted in (8.1). Let a(z), b(y) be func-

tions so that the functions p(x, y), ¢(«, y) are regular [a, b].

Mul-

“tiplying (8. 1) by a7 (x) b~'(y)dzdy and inlegrating,’we obtain

®:9) [ [ e e
| :[fofo?%l!%f’?y))dxdydt.

. One has ‘

e

o L e
L e ] s
| —f[ Paﬁf')‘)dz] da:f[ o qb(,i’J;)dt] dy;

- Journ. de Math.,’tome XXVI. — Fasc. 4, 1947, * ) 41
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applying the Schwartz’s inequality once more we obtain

] 1 1})2(.17, l) T 1 1q2(t’y) -'z‘.
l.:_[fo fo i da:dt] [fo e dtdy] ;

0

since p(x, y), g(x, y) are regular [a, b] the integrals in the second
member above exist. Hence the order of integration in the first
member of (5.3) is immaterial. A similar property is established
for the second member of (5.3), by merely interchanging the roles
of p(x, ¥) and g(x, v). Accordingly, (5.3) may be rewritten in

the form
l 1 ‘ 1 'p(x, t) /
fo foq( y)[b(},) e dx]dtd)
B 1 1 , 1 ‘P(t,)') ,
._j‘: j; q(x, t)[a(.r) i 50r) d)]dxdl.

On replacing «, y, t by t, x, v, respectively, in the last member, the
latter becomes

L oot | B an]

Consequently
(5.9 j f q(t, y)H(e, y)dldy-_—o.
where .
, N (@), 1 py, ),
(5.4a) H(t).})—b(),) . a(x) dz a(t)_/o‘ b(x) dz.

By (5.2b) one has
IH(, ) 2 Hi(0) + Hy(y),  Hi(ey= [ 22 gy,

a*(z)
W= [ Blnal, Wi (0)d Hi(y)d
2 ()= b (@) O 1(8)dt <+ oo, 2 () dy <+,
inasmuch as p(x, y)is regular [a, b]. 'Whence the integral
(5.40) 02:f f H (¢, y)dtdy

exists.  If c=o, i.e. if H(z, y)=o0 almost everywhere on (o, y 1)



SINGULAR INTEGRAL EQUATIONS OF THE FIRST KIND. 3I7

then b(x)™ a(y)™* will be a solution of the permutability problem.
If (¢, y)is any function regular [a, b], we have

< +o00.

(8.4¢)

1 .
f / (e, y)H(t, y)dedy
0o o

To demonstrate this it is sufficient to show that

A rsenl rfeao
_jo'fo it [ [ Bde | dedy| <+

el [ [ 2]«
[f f Ll U y)dtdy] [f f Pa(("' ) 4r dt] ;

thus the assertion ensues since p(z, y) is also regular [a, b].
Suppose ¢ £ 0; let a be any constant and form the function

(5.5) - n(tyy):qfl’]’)'*‘a'-'-lH(ty)')'

. Dow

Since ¢(t, y) is regular [a, b\] and H(z, y) is regular [1, 1], 7(¢, y) will
be regular [a, b]. Multiplying (5.5) by ¢=' H(¢, ¥), integrating and
-taking note of (8.4), (5.4b), we obtain

o oézfolfo'n(c, )=t H(L, n) dg dn.

Thus, provided H(t, y)zZ o, our solution (which we assumed as
existent) has the form

(5.6) q(t, y):’ﬂ(t,}")’—[f /‘ (g n)c! H(Cr ‘n)dCd‘n]l"’H(t, }'), )

where (2, y) is some function regular [a, b].

. Consider now the converse. Let a(z), 6(y) be chosen subject
to (5.25) so that p(z, y)is regular [a, b]. We construct the func-
tion H(z, ¥) (8.4a) and evaluate the constant ¢ of (8.4b). Sup-

pose H=£o0; then ¢<{o. Let n(¢, ¥) be an arbitrary function
" (€L, in ¢, €L,, in y), regular [a, b]. We take note of the state-
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ment in connection with (8.4c¢) and define g(¢, y) by (8.6). This
function will be L, separately in ¢ and in y; moreover, being a sum
of functions regular [a, b], [1, 1], ¢(¢, ) will be regular [«, &].
Multiplying (5 6) by H(¢, y)c ' dt dy, integrating and taking note

of (8.4b), it is observed that ¢(¢, y) salisfies (8.4). Substitution
of (8.4a)1in (3.4) will yield - : .

flf‘ 7| — P(‘”")dx dedy o
L J, 1 EGh ), Te@ ’

. r , 1 P():x) ,

_jo‘ j;q(,’))[a(t) b (o) dx]dtd).

Replacement of ¢, z, y, in the second member, by z, y, ¢, respec-
tively, will result in the equality preceding (5 4). In this equality
the order of integration is immaterial, in view of the developments
‘subsequent to (8.3) (valid since p, q are regular [a, b]) Hénce we
can retrace the steps back to (5.3) and, in fact erle (5 3) in the

form
f f [fp(“” D y”]a(w) b(y)

—f [ [f 9=, ) p(c, y)dt] T ,,(y)-
‘We thus have .

(8.7) fifotL(w,yl-q)da«;dyzoy

where

(5.8) ‘L(w,yw):a—(mf [p(z, t)q(t, y)—q(=, t)‘p(t.,y‘).]’dt-a

Accordingly, offhand there is no assurance that every function ¢ (z, y)
of the form (8.6) is a solution of the problem; however, we have

just shown that, provided c>£ o0, every such function sansﬁes the
related equation (5. 7) . ’

THEOREM 8. 9-— vy f gisa solution of the permutabzlzty problem (5 1),
L; separately in each of the variables, and if a(x), b(y) are chosen 1
so that p, q are.regular [a, b} (Definition:5.2), while H(z;y) of (8.4a)
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is"not udentically zero, then g will be necessaridy of the form (3.6),
where n(t, y)is some functionregular|a, b]and c( >o0)is from (5.4b).
If a, b(>x1) are suchthat p is regular [a, b] and H(z, ¥) is # o,
then every function q, as given by (8.6), will be a solution of (5.7),
(8.8), provided that c is defined by (8.4b), while n(t, y) is an arbi-
“trary function, Ly int and L, in y, regular[a, b].

6. Permurapiuity (conminuen). — We shall now obtain a complete,
though more complicated solution.

With @, b (>1) such that p(x, y) is regular [a, 4], introduce
kernels

(6.1) Pa,y)= B2, i, )= 220,
‘We have

1 1 1 1
f f P*(z, y)dxdy <+, f f P2 (z, y)dzdy <+ .
0 0 0 0

Let the u;, ¢i, A; be the characteristic functions and values of P(x,y)

and let the w;, 3;, w; be the characteristic functions and values
of P*(z, y); thus . :

6.12) #ﬁ“"):f P (z, ¢) oi(¢) de, "‘(l‘;”) :f w(t) P (¢, ) dt,

(6.10) %:fo P*(a, £) 5:(¢) dt, z‘f(:‘”) —_-fo wi(£) P*(¢, ) dt.

The sequences
‘ ’ (w), (v1), (W), (2) )

“will be chosen orthonormal. 'We complete them by sequences

T, (u), (¥1), (W), (=),

respectively ; that is, each of the four sequences

[(ul); (u})], [("t)’ (92)17 [(Wi)7 (W;)]’ [(zi)’ (22)]

. are complete orthonormal. Moreover, we shall have
(6.1¢) - o:f it’,(t)P (¢, z) dt :f P (z, t) vi(t)dt

L 1 ’ 1
=[P e di= JRICOEOrD
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Form the sequence v;;(@, y) (i, j =1, 2, ...) consisting of the functions

vo(x) wal( ) . uy(z) s2(y) “v(x) W, ()
®2 5737 T a@ w a@ 0 @30

(v, n=1,2,...). Sincea, b1, the functions (6.2) do not exceed
in absolute value the functions

oy (®) W) l +|u"(‘r) :"(‘y)la | ey (x) za(¥) ], lov(z) Wi ()

respectively. Clearly the v; J(w, y)areall L in (2, y). By a fami-
liar process we orthonormalize the v;j(x, y) on (0 Lz, y £ 1), dest-
grating the resulting sequence by

(6.3) : Pz, y) (l:’j:l)% )

we have

1 1 1 1 .
f f pi(x, y)dzdy =1, f f B (2, ¥) pap (2, y)dzdy =0
0 0 0 0

[for (4, /) (a, B)]-
The following result will be proved.

Turorem 6.4. — Suppose q(x, y) (L, in @, L, in y) is a solution
of (8.1). Choose a(x), b(y)(>1)so that p, q are regular [a, b];
with these a, b construct the sequence | p.u(w, NI(6. 3) Then q thl ’
be representable in the form

(67;0) ‘I(w,.}')"'ﬂ(w,)’)—Z[f,f (¢, T) pai (2, ‘l')dfd‘l'][li,(x,])

[~ s symbol o f convergence in the mean square over (oL, y L1)],

where ©(x, y) is some function L, in x and L, in y, regular [a, b] and
such that

(6.40) { i n(t,r)p‘(t,r)dtdr]’<mi" w \
e

[l

The converse. Let a, b (1) be chosen so that p is regulér [a, b].
Let n(x, y) be any function, L, in  and L, in y, regular [a, b] and _
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such-that (6.4b) holds. Then q(x, Y), as given by (6.4a), will be a
solution 0f(5 1), L, in x and L, in y, regular | a, b].

Suppose ¢, a, b, p,; are functions as specified at the beginning of
the theorem. We think of ¢ as substituted in($.1). One may thus
write

(6.5) Fi(z, y) =F,(x, y),
’ F, — p(.z', t) ‘I(try) \ ) — q(x, t) p(L )
@&N=) L@y by o B f atmy b0

Designate by (u;(«)) the sequence consisting of the u;(x) and

the u;(x) and by (w,( y)) the sequence cons1sung of the (w,(y))
(w ( y)) The sequence

(6.6) {u,(w)c?i(y)} (L 7=1,2,...)

is complete orthonormal on oz, y 1, inasmuch as each of the
sequences (u;), (w;) has this property on (0, 1). One has

(6.6a) Uy, == Un, Wiy, = Up; W), = Wy, W)= w,.

It follows without difficulty that F, (z, y), F,(«, y) are L, in (z, y),
inasmuch as the four functions

Cpmy) g3y 4@y play)
a(z) "~ b(y) a(w) b(y)

have thls property. Accordmgly (6.5) is equivalent to the relations

(67) aj/-——-ﬂi/y

where

. Pz 1) ¢,
wror [ [ H M5y

— ‘g(z, 8) p( y)—
ﬁil_»/.; /; a(a:) b(y) u(w)w,(y)dxdydt

Now the order of integration here is immaterial. In fact, if we
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consider the integral for a;;, for instance, it is inferred that

flflf ci(l:;)t) qt(zz’;)))“‘(f)“’/(y)|dxdy dt
Ak

P, t)u(x)ldw][ ql()( J))“,,(),)dy]
JACIEN ()

éf [f @) ] U T0Y "]
‘P 1) "¢ (e, y) '

é[] [t ar dt] [f A dt] <o,

We obtain

aij:”f fo [fo u(x) P(z, t)dx]q(t, y) b’((y))dtdy

and, by (6.14a), (6.1¢), (6.6a),
n(t) @
n b

J)

(6.8) ai,,,,;fo1folq(t,y)[vl

similarly

]dtdy, %y ;=0

(}’

ﬁ,,-:x f [ f wi () P*(, t)cfy]q(w, t)ﬁg:;d?dt: 3

so that, in view of (6.10), (6.1¢), (6.64),

(6.8a) Bi,; __.f f q(z, t) [l:((‘:)) W}fvt) dz dt, Bij.=o.

Vamshmg of the a;, , (3, . 1s a consequence of (6 1¢) and is not con-

tingent on ¢; however, in view of (6.7) the vamshmg of these num-
bers necessitates that :

alj'=0:pi{ NE

here one may discard, as superfluous, the values i = U J=Ju Whlch
gives as a necessary condition

ai,,,],—o‘“'pin.iv (rnyv=r,2,...);
in fact, (6.7) is equivalent to the above and to

a7, =B, .
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In view of the expressions given in (6.8), (6.84) for the a;,,, §: ;,
we tl\'lllS conclude that (6.7) is equivalent to

(6'-9-) , f f‘](»l‘; X)) -V,,!(.z') “;:(‘y)— da dy
Y SN A CIRX 2] e
—jo jojq(.z,y)- )——-— dedy,
(6.9a) ‘ f f q(z, y) 'v,,(.z') WC(")'Y dedy=o
- :f f q(x, y) L‘;n((:))ZV("Y) dz dy;
(6.9) we rewrite in the form
. o) () (@) 5O
(/6-9)‘ fojo\q(x,}’)[ W b)) alz) p Jd.zd)_.o.
The relations (6.9a),-(6.9') accordingly imply that, if ¢ is a solu-

tion of (8. 1) (with the stated properties), then ¢ is orthogonal to all
the functions (6.2); that is

1 1
f f q(z, y)mj(z, y)da dy =o.
[} 0
As a consequence one has
. 1 at * .
(6.10) f f gz, y) pij(z.y)dzdy =o [, /=1, 2,...; cf. (6.3)]
[] [\ ,

The integrals in the left members here exist inasmuch as the integrals
in (6.9a), (6.9') exist, while any p; is a linear combination with
constamt coefficients of a finite number of V- The following 1is, in
fact, true. If s(@, ¥), Ly in x, L, in y, is regular [a, b], then the
integrals - ;

(6.11) f f s(2, ¥) w2, y) de dy

exist. This follows from the fact that the s(zx, y)nij(, y) are inte-
) grable in (z, y), which ensues by virtue of inequalities, of which the

_Journ. de Math., tome XXVL. — Fasc. 4, 1947. 42
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following is typical

foljod‘s(x,y)vn(x)“;}()’))'dxdy

é[fmlj“s’,f,“("”))d dy] [f f vn(x)wv(y)dxdy]

Let the y;;(¢, j =1, 2, ...) be a set of real constants such that

. 2‘{,"7<+oo.

Li

1

There exists (by the Riesz-Fisher theorem, for example) a func-
tion y(, y), such that

(6.12) Y(z, y) ~2Yz~j pij (2,77 ),
i,

1 1 1 [ ’

(6.12a) Y(z, ¥) pij (x, y) dz dy =74, Y (2, y)dzdy= D Yi.
I [ 3

We put ,

(6‘3) 77(1’:)’)29(96: )’)+Y(¢y9’), . -

n (@, y)is L, in z and in y and is regular [a, b], since ¢ (x, y) has
these properties and since 'y(x, y) is regular [1, 1]. On taking”
account of the italics in connection with (6.1 1) and of (6. 10) (6. lza),
from (6.13) it is mferred that

- (6.13) ffn(w,y)m;(w,y)dwdy:ffY(w,y)wi(w,y)dxdy=w

This fact, together with (6.13), (6.12), implies that the postulated
solution q (x,y)is representable as stated inthe ﬁrst part of the theorem.
The inequality (6. 4b) holds by (6.13"), in view of the convergence
of the sum of the ;).

To prove the remaining part of the theorem assume that a(x),

b(y), n(x, y) are functions as specified in the converse part of the
. theorem. The numbers

(6.14) 'Yi;_-:f' f (¢, T) Py (2, T)dt dr
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can be defined in view of the italics in connection with (6.11).

By (6.46) the sum of the Y, converges. Accordingly, (6.4a) can
serve to define a function ¢(z, y), '

q(z, y)=m(x, y) - v(r, ¥), Y(z, ¥) NETU py(z, ¥),
(6.15) L)

Al 1
j f Y(z, y) iz, y) dz dy =y,

Multiplying by w;;(«, y)dzdy and mtegraung, as a consequence
of (6.14) it is deduced that

1 Al
f fq(w,y)w/(w,y)dwdy=fj (2, y) py(x, y) dedy — yij==o0;
0 [} 0 0 .

that is, (6.10) will hold. Accordingly ¢(x, y) is orthogonal to
“the v;(x, ¥). In other words, the function ¢(x, y) defined by (6.15)
satisfies (6.9a), (6.9’). However, it has been indicated previously
that the latter relations are equlvalent to (6.7), which in turn
implies (6.5). Whence q(w, y) is a solution of (8.1). Now

in (6.15)
ff*r’(w,y)dwdy=2ﬁ;<+°°;
0 0 .' 47

thus y(x, y) is regular [1, 1] and g(x, y) is regular [a, ], as is the
case with n(x, y) This completes the proof of the theorem.

Itis worth noling that, as we proceed constructing a solution ¢(z, y)
of (8.1), in accordance with the theorem, n(z, y) can be always
chosen not L, in (z, y). This is due to the fact that p;;(x, y), being
a linear combination with constant coefficients of a number of

: v],,,(w, ), consists of two terms

By(@ ) B )
where (@, y)is a linear combination of terms

uy(z) .
a(z)

uy(z)
a(z)

-

2n(Y)s za(y)

and y; (2, ) is a linear combination of terms

wn(y) W (Y)
Vv‘(x)W’ ov() F(y)
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[¢/. (6.2)]. Itisthe presence of the factors a=* (@), b~*( y) in g, pi
respectively, that enables us to choose n(, y), if desired, regular[a, 5],
so that the inequality (6.4b) holds, while the integral

1 1
f f w(x, y)drdy
0 0

diverges The corresponding solution q(w, y) will then certainly be
not L, in (&, y).

7. InversioN ofF ScamibT KERNELS. — In the Schmidt theory of non-
symmetric regular kernels, given a non symmetric kernel ¢(z, y),
there is associated with it a symmetric kernel

(7.1) ) f(x,y):f q(x, £)q(y, t)dt.\

In this section we shall consider the converse of this problem; that s,
given a symmetric function f(x, y), to find q (z, ¥) (po.s‘szbly non
symmetric) so that (7.1) holds. Furthermore, this problem will be

cons1dered in the szngular form in the sense that we merely assume .
[

(7.2) ' S (=, y)CL, (m x), cL,(in y)

Choose a(x)(>x1) so that F (w, y)=a" (w)a—‘ (y) Sz, y) L, )
in (x, y). Suppose(7.1)hasa solutlon L,inx and in _y, such that i

(7.3) ‘fowammme me—ﬂﬂﬂ

a(z)

We think of ¢(x, y) as substituted in (7 1), Wmlmg (7 r) in -the.
form

IR
e

(7.1 wimQWMw:w@n-

-

Since F(z, y) is L, in (@, y) and is-symmeiric, F(z, y) has real
characterlstlc values and functlons 7\v, uv(x)

(7.4) ““(’”) f F(z, fu()de - (V=1,2,..0)

/
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Let (4, (2)) be the sequence complementary o (u,(x)); thus
.(7.421) le(x,t)u(,(t)dt::o.

We arrange to have [(u,(2)), («.(x))] orthonormal and write
(7.40) 0, (@)= un(@), (@)= i, lr)

[(dyy 22y o 00), (0, 4y, .. )=0(1, 2, ...)]. If one thinks of the first
member of (7.1") as a kernel, it is observed that it is positive definite.
Hence, if there exists a solution, as stated, the characteristic values
of F(x, y) must be positive,

(7.5) A>o,

which is a necessary condition. The sequence
(7.6) : o) ui( )}

is complete orthonormal on (o =z, y<1). By (7.1') -

(T9) Fuy=[ [ Flar) =)y dedy

’ :fot[fo‘Q(x, :’) Eg(.r)dx] [f‘Q()', :)17,()'),13,] dr.

The last member here is oblained on making use of the permissible
change of order of integration in

h ffo(w ) Q(y, t) w(2) wi(y)dzdy dt, -

a fact ensuing from (7.3). In view of (7.4), (7.4b)
- Fi,.,/:f .un(_}") %yld)’, Fuhi: 0.
Inasmuch as F,-,«: ji, one has
(T.9a)  Fuu=3  Fy=o  [for (4, /)7 (in i),

Actordingly, on letting.z';:_j= i, and then /=; =1, from (7.9) it
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is inferred that

[ [ e om@a|a=g, [[ [ Q) (&) s | di=o,
Thus .
(7.8) fu’,,(:c)Q(x,t)dt:o;

/

furthermore, since F; ;=0 ({5£/), in view of (7.7) it is deduced
that the sequence

(7.8 a) v,.(t):l,%f un(2)Q(z, t)dx (n=1,2,...),
0
is orthonormal. It will be now shown that
(7.85) u,,(w).—_ﬁ*,f Q(=, ¢) va(t) d.
(]
In view of (7.84a), by.(7. 1") one has
K[ Qe oenoyde= [ [j Qe QU t)dz] ua(y) dy

:.).,,f F(z, y) ua(y) dy;

\

(7.8b) will ensue from (7.4). Thus, u,, ¢, A* are evidently the.
characteristic funclions and values of the non symmetric kernel Q(z; y)

[note (7.8) and completeness of the sequence (u,)]. Letthe ¢, com-
plete the sequence (¢,), :

(7.80) - fiQ(x, t) v.',,(.t) dt—o.

‘We form a sequence /(5,-), with

(7.8d) G o=t

v

The sequence

(7.9) ' {w@nm}t -
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is complete orthonormal on (0 -2, y < 1). Correspondingly

(7.10) Q= )~ X Q) 5(y)

h ¥

(convergencé in the mean square in (z, y)), where
(7. 10@) . Q,i:f f Qkx, y)w(z)vj(y)drdy.
Inasmuch as Q(x, y)is L, in (x, y), the order of integration here is
immaterial. By (7.4b), (7.8d)and (7.8), (7.8¢)
Qu=0=0Q; (n,v=r1,2,...).

For the remaining Q; ; one has

-

Q= [ Qa7 tn(2) () dody

and, by virtue of (7.84a),
| an,i.,:[1l2%(’n(y)vv(}')d)’-
Thus
(T068)  Qui=Kit  Qu=o  [for (i )5 (i o]
. Whence (7. 10) takes the form

(7.x0) QU y)~ Y, 5 ual@) oal(p),

n

" while [by (7.3)]
(T Zi[=Zle.:fer(x,y)&Lxdy]<+w.
V n tyl 0 0

This is another necessary condition for existence of the postulated
solution. ) :

‘We now consider the converse. Assume (7.5), (7.11) and let (v,)
be any orthonormal sequence. Designate by (¢,) the set complemen-
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tary to (¢,) and let (v,) be the totality of the ¢,, ¢,,
(7.12) V_l}:" Py, };_—_ .

In view of (7.11) we can construct a function Q(z, y),

(7..13) \ Q(-Z‘., )’)NE—I%‘UH('”) on(y)-

n
(R

As a consequence of (7.11) Q(«, ¥) is. L, in (w,\y’). On writing
=" [y ama =[] [ w0 ewnd|horv,
" one has (7.10b). Furthermore, by (7.40) |
Qia,i=£i[£llth(w)Q(I, )’)d‘”];’_i(}’)d)’:-o
(j=1,2,...); since (¢;) is a complete sequence, this implies that

f ui,(x)Q(w,y)_dy:l) (n=1,2,...).

On the other hand, : ) )
1 1 . _ N o (J AZJn),
Qs = [ un(w)Q(w,y)dx]v-(y)dy= 1 ,
" S , ' N =,
(j=1; 2, ...); also, inasmuch as (¢;) is complete,/ \

f un<w>Q<x,y)dm_An7v,,(y>—x vnm

Accordingly, the Sunction Q(z, y), gwen by (7. 13), .sau.gﬁes (7. 8),
(7. Sa) (7 .8a) signifies that the sequence

(7.13a) ﬁf u,.(x)Q(w,y)d.é (r=1,2,...)

"1s orthonormal inasmuch as the-sequence (¢,) has this properl,y
Consider the symmetric functlon
. ‘ . .
(o) . H(w,y>=f Qz, Qy, tyde. =~
\ . ;1 , 0 AN ) N . y
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Since the sequence { u;(2)u;(y)}is complete, equation (7.1") will be
satisfied if

Hy=[" [ H(a, y) (@) w0y dody
® S
=—‘th[=j f F(x,y)z,(x)g,-(y)dxdy].

Now the order of integration in

is immaterial, since Q(z, y)is L,in (2, y). Thus by ()

H,,-:l:f [f ul(z) Q(a, t)dx] [f ui(y)Q(y, t)dy] dt.

Clearly H;;=H}; and, as a consequence of (7.8), (7.4b), (7.8a),

Hi‘ul'= o= H()g.,

H, :f [f un(2) Q(a, t)dx] [f u\.(‘;')Q(_)', t)dy]dt

=f1_p_n_(_£2"L(_t_)dt= (n#v),
o o

(n=v);

= ©

that is,
Hoo=gpr  Hy=o  [for (4)# (in )]

Hence by (7.7a) Hy;=F;; (all (z, j)). The function (7.13) there-
fore satisfies (7.1'). Multiplying by a(«)a(y), one obtains

f gz, 1) q(y, )y dt=f(z, ),

where . |
(7.14) ’ q(z, t)=a(z)Q(=, t);

¢(z, y) will constitute a solution of (7.1). We thus obtained the
following result. - -
Journ. de-Math., tome XXVL. — Fasc. 4, 1947. 43
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Tueorem 7.15. — Consider the problem (7.1), where f (x, y) s
symmeiric, L, in ¢, L, iny. We look for solutions q(x, ) not neces-
sarily symmetric.
~ If for some a(x) (1), such that

Pz, )= L& cL,

a(@)a() Lin (2, 2y
the characteristic values \; of F satisfy
(7.15a) A> o, 2%‘<+°°;
i

while the problem has a solution q(x, y) (L, in x and L, in y) such

that Q(z,y)=a*(x)q(x,y) is Ly in (x, y), then necessarzly q(z,y)
must be of the form

(7.155) %Ng;\%un(‘r) ¥n(Y))

n

swhere the u,(x) are the characteristic functions of F and (v,) constitutes
a certain orthonormal sequence [cf. 7.8a))].

The converse. If a(x) is such that F(x, y) (cf. above) is L,
in (x, y), while (7.15a) holds, then functions q(x, y) of the
Sform (7.15b), where (v,) is any orthonormal sequence, will satisfy
the problem; furthemore, a=*(x)q(x, y) will be L, in (z, y).

We observe that a solutiou q(x, y) of (7.1) satisfies the iteration
problem

(7.16) f g(x, £)g(t, y) dt=f(z, ),

if g(x, y) is symmetric. It is of interest to note that for symmetry
of q(x, y) it is necessary and sufficient that

q(z, ) _ o _
a(x)a(y)[—Q(x’)')a (»)=T(z, y)]
be orthogonal to the functions of the sequence

(7.16 a) rn(z) wi(y) (5 j=1,2,..,),

2 un(@) w (1) — (@) n()] (<), -
orthonormal on (0o Lz, y <1). )
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In fact, T(x, y)is L, in (@, y). Now

T(z, )~ DTy u@) w(y), T, @)~ JTyuly) ().

ij 4L,j

Interchange of 7, j in the latter relation yields

T(y, )~ X, T () u(y).

i
Hence symmetry of ¢(x, y) is equivalent to the relations T;;=T,,;
that is, to

U UE ) () uj(y)dzedy = Q(z’y)ul(w)uz(y)dxdy
o o aly) a(y)

The order of mtegratlon here bemg 1mmalerlal, one may write the
above in the form

jo‘ I:»[ L?,(x)Q(x,y)dx] l;"((;/))dyzl [f u,(x Q(x,))d,r] l(lzl((;,)) ).

In view of (7.8), (7.4b) the above is equivalent to

f [f u,,(.z‘)Q((")y)dx]u(,(y)dyzo,
! ! u(y) , _ ! w(y)y
f[f un(x)Qw,y)dx] ks d’“fo [f (%) Q(z, y) dz ] w2 ay

The conclusion (7.16), (7.16a) ensues.

Let (W,-(w, y)) (t=1, 2, ...) be a sequence completing the
sequence (7.16a) on (0 Zx, y £ 1) in such a way that the u(x, y)
and the functions (7.16a) Logether form an orthonormal sequence.
If q(@, y) is a symmetric solution (with stated properties) of the second

~,order iteration problem (1.16), we necessarily have

-

(7.17) ?-‘%(”% NZY:M(% J)

in the sense of mean square convergence on (0 Zx, y £1).. This fact
. ensues as a consequence of the orthogonality of T(z, y), to the func-
tions (7. t6a).
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8. Tae 1rerATION proBLEM (n=2). — We shall now investigate the
second order iteration problem

(8.1) (g (, y) =] f g(a, 0)q(t, y) dt=f(@, y),

where f(a, y) is given symmetric, L, in &, L, in y, and the solu-
tion ¢(x, y) is to be symmetric, L, in 2 (in y); the equation is to be
satisfied for almost all (x, y) in the square (o Zz, ¥y <Z1).

We observe that for exislence of a solution (or solutions) of (8. 1)
it is necessary that f(a, y) be positive definite, this we henceforth.
assume. One can represent f(x, y), in infinitely many ways, in the
form

(8.2) ‘ Sz, )')=li'znﬁ7l(a')y)’

where f.(x, y)is L, in (2, y) and fu(x, y) is symmetric, posmve :
definite. Furthermore, the f,.(x, y) may be chosen so that -

(8.9) [f t (2, t)a’t] Zf (@) <+ -

almost everywhere, with f*(x) mdependent of m. An example of Soms
satisfying the above conditions, is given by

Jm(z, y)=f(2,y)  (wherever|f|<m),
Jn(z;y)=%tm ~  (wherever == f> m).

Consider any particular representation (8.2) (that is, assume a par-

ticular sequence ( Sm(, y)) Desxgnate by )\m,,, Uny the characte-
ristic values and functions of f,.(x, y),

(8.22) u,,.v(x)——-szfm(w,t)um(t) (v=1,2,...);

here A,.,>o0. Corresponding-to a fixed m we break up the sequence

A
(V) =(1,2,5...) .
into two sequences -

(8.25) - )y () (U=1,2,...)"
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and, correspondingly, write

(8'20) F&’,’}'(w, }'17\)': 2 um,pl(-"') um,p,(,}') ()>°)?
0 Ay, < ’

Iz, y1M)=0 (Ao),
I (2, y|A)=o0(X o), and

(8.2d)  TW(z,yIM= ¥ tny(@) tma(y) (A>0),
o<A,,,,,.I<).

T3'(2, y|X)=o0(AZo). The speciral function of /,(z, y) is

(8.3) Tz, yIN= 3, um(@)tm(y) (2>0),
t °<)\mu<)‘
L Mz, y|\)=0 (Ao).
One has :
(8.4) T (x, y |2) =T (2, y [}) + T (x, y [ 1)

For some (m;) (limm; =+ ) the limit

(8.4") - limE(a, y |} =T (<, y |3)

exists and represents a spectral function of f(x, y) [in the sense
of (C)]. We shall show that (m;) may be chosen so that the limits
(8.5) HmIG)(z, y|\)=T""(z,y|}), ImIGF (e, y|})=T"(z, y|})
exist also and represent functions of bounded variation in A (on every

finite real interval).
‘We write

0=lo< li<' . .< l;:l
and note that, by (8.24),

.llm""EZl l‘%l’(w’ Y l l]) - r;:l,(a" Y l lf—i) l é 2 l um./l,‘(w) um,p/(y) '

i=1 Am"-’l<1
1 1
= 3 M) f (@ €) g () At [ fun(7s 1)t (0) e
. )‘m,p]<l 0 . . 0 )

élf ’ ; I\/oqf'n(x’ 2 um’pl(t)dt.l’z |.>/o\,‘fm()', t) um.m(‘) ;il ﬁ—z
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and, by Bessel’s inequality and (8.2"),

Anus < 2

[ 0a [ furnal zere@ ro)
Hence ‘
IRy y I, Var|gTRY (o, |2) L B (@) ()

for |A| </ and for all / > o. The latter inequalities signify that the

sequence (1,), involved in (8.4"), conlains a subsequence, which we
still term (m;), so that

limIy) (2, ¥ |2) =T (2, ¥ |})

exists; in view of (8. 4), (8.4’) the same will be true for '/ (@, y|A).
The italics with respect to (8. 4a) are thus demonstrated.

The condition (8.2') may be deleted, if in some way we can
demonstrate that

At ZG(x, y, 1) [G(z, y, ) <+ o almost everywhere, when 0 <! <+ o]

where the second member is independent of m, s, and if a similar
mequahty can be established for I';". '

In view of (8.4), (8.5) there'results a decomposttzon of the spectral
Sunction T of f,

(D) I‘“‘(»’v,.)'ll)—l“"’(a?,yll)+I‘I” (=, J’ll)

This decomposition has a con51derable degree of arbltrarmess The
formula (D) depends on the choice of . the approximating func-
tions fu(x, y) [c¢f. (8.2)], the choice of the sequences (p;),
(n;) [(8.2b)] and on the choice of the sequence (m;) in (8. 44a).
Suppose g(x, y) is a solution with properties as stated at the
beginning of this section. Define g,,(, y) by the relations )

(8.6) {qm(x,y)=q<w,y> [when |g(z, p)I<m], -
' gn(z, y)==m [when+xq(z, y)>m]. '

Let the p,.,, um,(x) be the characteristic values and functions
of gm(x, ¥)
1

(8.6a)  umy(Z)=Pmyv [ gm(x, t) umy(t)dt..
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Designate by I',,(x, y|p) the spectral function of gm(z, y); thus

2 umv(x) “mv()’) (forp)o),
(8-6.b) , I‘m(x’ylp)z 0<pm <P

) — ) um(@) um(y)  (forp<o),
P<Pmv<0

I‘(ai, y|o)=o. Inasmuch as g(x, y) is L, in =, it follows by spec-
tral theory that for some sequence (m;) the limit

(8.6¢) . limIly (2, ¥ |p) =T (2, y|p)

exists. The spectral function I'(z, y|p)of ¢(z, ¥) is not necessarily
unique. The kernel

1.
(8‘7) q%l(x: .}')=f gm(z, t)qm(t; )’)dt
. o

is regular, thatis CL, in (@, y); it is observed that the

Ay = P’mn Umy ()
_are the characteristic values and functionsof ¢ (x, y). Sinceg(z, y)
has been assumed to be a solution of (8. 1), with the understanding
that existence of an integral related to an iterant implies absolute inte-
grability, we note that the integral
o ‘ 1
(8.7) 902 1= [ lg(@.0) 0, p) | de
[
exists; thus, inasmuch as -
lgm(2; 8) gm(t )| <1 9(2, ) (8 )1,

we.obt'ain [for almost all (z, y)]

(8.70) limghi(z, )= [ (s, )9(6; ) de=g"(x, 1) = (=, 7).
. Yo /
, ‘The kernel ¢ (&, y) is therefore L, in 2 (iny)

Jm (2, y):" gl (z, y)

is a fegular approximating kernel of f(&, y). Obviously [¢f. (8.7)]"
fn(@, y) is positive definite. For any fixed m the sequence (v)
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consists of two subsequences (p;), (n;) so that _
Pmp;= \’I)‘m.ﬂl> o, Pmny=— — \/j(m,nl< o ) ([ =1,2,...) !

We note thal (8.2"), as relating to the case at hand, may be dispensed /
with in accordance with the remark preceding (D); in fact, the ine-
qualities subsequent (8. 4a) may be replaced by

amez ¥

),..,,<1

\/)\m P/ Qm(.}’: t) um,pl(t) dt
[cf. (8. 60)] so that ' ‘
Ams ~ l? 2 |f G (2, 1) Up,p (L) dtl 2|f q,,,(y, t) Unm,p;(t) dt ‘

<lg(x)q(y) [q (z)zf 7 (, t)dz]. -

A similar inequality will hold for I'2".
(2, y|p) of (8.6b) may be expressed as

\/)\,,,,,If gm(x, 1) u,,,',,l(t) dt

niln-

To(@, 71)=" X\ tnp(@)tm,(3) . (forp>o),

h mp1<P .

Pu(xy ylp)=— z umni(x) umn,(.y) (f°rP<°)-
Amyn SP’ ’

In view of (8.2¢), (8.2d)

(8.8) Lz, ylp)=T"(z, ¥1p*) (p>o)

and - 4
(8.8a) —Tn(zylp)=TR"(2,y]p")+om(z,¥p) (p<<o). -
where ' -

(8.85) om(z, y|p)= 2 ’um,n;(‘”) Umni{Y);
)‘m'nl—P'

- ~

the latter sum is over values j J (if any) such that A, ,=p?; there may
be several A, , equal to p? ; one has

(8.8¢) om(z, y|p) =0 (for p¢ \/).,,MJ) C

The sequence (m)==(m;) in (8.6¢) is chpsen‘ so fch'at- the  limits
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in (8.4a) exist. Since, as m;—> o, the limits of the first member
and of the first term in the second member in (8.84) exist and are of
bounded variation, the limit

0'(.’1', .y I P) == “m 0',,,[(.1', .)/ l P)

" exists and is of bounded variation (on every finite interval); by (8.8¢)

(8.9) o(z, y|p)|=o (p;f———\/m;j, i=1,2...)
In the limit from (8.8), (8.84) one obtains
Pz, ylp)= TI¥(x, ylp®) (p>0),
8.
®0) {F(fv,ylp)=—T“l"(w,yIp*)—-v(w, ¥le)  (p<o)
It is to be noted that, in view of (8.9).

. .8
(8.10) j c(z)dyo(z, y|Ay=o,

whenever ¢(1) is continuous on the finite closed interval (a, B). In

“fact, let
a=pp << P <. . . < pa=f

and designate by {, a point on the interval (g,_, p,). Since the set
of points & exclusive of the —\/7L,n,,,j(m, J=1,2,...)Iis everywhere
dense on the axis of reals, the p, may be chosen in ¢ so that the
maximum | p,— py—, | (v=1, ..., n) is arbitrarily small. With such
a choice of the p, one has
' Bya(z, y [N =(2, 7 ps) = 9(, ¥ | pv-s) =o0.
‘Whence
Sa= (&) Ava(a, y| 1) =o;
v=1
now ¢ is of bounded variation and ¢ is continuous; hence the integral
in:(8.10) equals lim S, =o.
' 1 . : .
‘On writing £, =0”, by (8.94) and with the aid of (8. 10) we obtain

A
(811) f dI‘(x,y[p)—f —drlzl(x,y“,z _f —drﬂl(.z',ylpz)

__f T (2, ) —f IV (2, y[2).

Journ, de Math., tome XXVI. — Fasc. §, 1947.. 44



340 . W. J. TRJITZINSKY.
If the integral

f S, Tz, y1p)

converges in the ordinary sense or in the mean square in & (in y), it
will represent ¢(x, y). ft will be shown that

I I @y 11 ~ 1 (),
(8.12) ’ '

£

]

/
in the sense of mean square convergence in « (in y) to some func-

tions ¢', ¢". By virtue of (8. 11) this would SIgmfy that in the indi-.
cated sense one has

(8.13) f 2, T, y 1)~ gl ) =1 (5, ) = 7'(@, 7).

—_=

In order to establish (8.12) [and hence (8.13)] we shall first
prove that

(8.14) A(f):f Ly Tz, 2] 2) <-+oo
for almost all &, this being a condition necessary of the existence of a
symmetric solution q(x, y), L, in & (for almost all y). "We note that

for such a solution necessarily ¢*!(x, y)is L, in (for almost all y).

We proceed now with g(, y) having the stated propertles Applying
the spectral formula (1.12), with T

K(z, t)=¢q(=z, t), g(t)y=gq(z ¢t), guv=I [ef- (‘8'60)]’ .

we obtain

(1°) f q*(z, t)dt:fwgdpf I'(z, tlp)q‘(x, t)ydt[= T:,’]‘<'?o

(\in~ the sense of otdinary convergence, for almost.all z). As a conse-.
quence of (C; p. 33) we have

P 1
() K, yley= [ 2 [ Ty, 1)) qle, dt;
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also, we note the theorem (C; p. 11) according to which

1 [4 b
(%) . [ oo, [ () da(d)= [ a(p)u(p) da(p)

~whenever o, w are functions continuous on the closed interval («, b)
and a is of bounded variation on (@, b). With 0 <3< w0, we
consider the integral

(4°) =<f +f> sd, T (e, x)p).

In (4°) we substitute I'(, = |p) from (2°) and then apply the theo-
rem (3°), with

o(p)= é, w(A) =], az().):‘f0 Pz, t|d)q(x, t)dt;

a(A) is of course of bounded variation, since ¢(z, t)is L, in & (in ¢)
and I' is a spectral function of ¢(z, t). By (3°)

S:Z (f_,_a"’fa’) édpfolr(x: t]p) q(x, t)dt.

Comparing the second members here and in (1°), one obtains
(5°) th =Ty (as 8 —o0, { -+ o0).

, Thus by (x° ) and (4°)

_ . T::l.—So =]=f ‘—)I;dpl‘(x,xlp)<+oo

(almost all #). As a consequence of (8.9), (8.9a) it is inferred
that ~ _
B To=A(z) [¢f (8.14)]
’ Thus, in viewof (5°), (8.14) has been proved By virtue of (8.14)
~one has A = A’ A", where

A’(w)—f AT (2, 2| 0) < w,

. (8.15) S,

N K@= [ 1A @ 2 ) <,
o ‘

(almogt él_l x); A'>0, A">o0.
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We let o </<Il' and observe that by (8. 2c) and by Fatou's
lemma

° 1 v
Qu__f [f — d, T (z, y m] dr < lim [fl \ﬁdxr""(x,yll)]dw

m;j /o

\
(0, _l_
=l [Z o) um,p.wwm,.».m] do;

m;
rve i

liere the summation is over values ¢ for which A, ,, ison ({, 7). One
has ’

N -?_ ’
QI'IIA llmj 2( 2 In;’ \m /h Lm Po(r) Um Pl(‘L‘) X Um Pl() ) Um N4 (y) dx .

"ll

)

-—lnmz —u,,,,,,())_.hm Ad)‘ l‘i,%”(y, yl?\).

m, "ll 1]

By Helly's theorem on the passage to the limit under the integral sign,
, :
Q'-"éf 5 TEr(y, y12).
{

Since the first integral (8.15) converges, we have : /

-

lo=]Qtt'<<e  for 1, Ixi(e),

where [(¢) is suitably great.” Hence the first mtegral in (8.12)
converges, as indicaled, to some symmetric function ¢'(z, y), €L,
in z (in y). We 51m11arly prove the other relation (8. 12)
Whence (8. 13) holds.

We consider now the converse. Itis assumed that f(:v, y)is pos1- '
tive definite and that the integral (8.14) is finite (almost every-
where) for some spectral function I'® of f [then the integrals (8.15) .-
will have the same property for any decomposition (D) -of I'™].
Consider now a choice of f.(z, y) so that (8.2), (8.2) hold, as -
well as a choice of sequences (p;), (n;) [¢f. (8. ab)[form=1,2, ...
(these sequences may depend on m). Let (DY be & correspondzng )
decomposmon of T, obtained for some suitable sequence (m)= (m,)
[involved in (8. 4a)]. We envisage (8.15) for this decomposition. - -
We repeat the developments given subsequent to (8.13) up to phej i
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inequality Q%% <, assigning to the symbols involved their present
meanings; the latter inequality will ensue by (8.15). A similar
result is obtained for I'®”.  On the refore has

- f \—/Iid\ IO (2, y [A) ~ ¢' (2, ),
(8.16) ’

s |
.__dr[ﬂ" y ll\l” y Y
IVAz (@ ¥1N) ~ § (2, )

[mean square convergence in & (in y)], where ¢’, ¢" are some sym-
melric functions, L, in (L, in y).
We have*

B.17)  1g(@ y)<+w, [¢(z y)=¢(x,y)—¢"(2, )]

almost everywhere. It will be shown that ¢(a, y) is a solution of the
iteration problem.
~ Censider the functions

- { - {
(U = [ LaTrerz, yd), "W (g, y) = f ST (2, y| R
7z, y) fo\/x I e i SR
and observe that '
.l i v
7z, y) = f %dpr""(w,)’lpg), g (z,y) = f gdprm"u,ylp)
. 0 0

(l’ = l%). Since by (8.16) ¢'", ¢"* converge in the mean square in 2
(in y), as { > + o, to ¢', ¢, respectively, we also have

| f idprm’(w,flp’)~q’(~:v»y>’ f %de“""(wmp’)~q.”<~”»f>'

', One accordmgly has -

9(z, ¥) Nf dpl‘m (2, ylp? )-f —d, I’ (:r,ylp)
[Gf (8(17)],that is, ' i

| ';f.s“ls,) L gz y)~ f_ jdpe(f’ﬂ?)»

iwhére ¢

L T yie) (p>o)
. e(;v,yl.P)-—{. —T¥(z,y1p")  (p<o)
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It is observed that 8(z, y|p)is a spectral function (a denumerable set -
of values ¢ possibly excepted) of ¢(x, y). Using this fact and
observing that the lines of reasoning employed in (C; 124, 125) are

now valid as a consequence of the fact that ¢(z, y) is L, in «, we
obtain '

[0 10 =g, ) -

in the sense of ordinary convergence. Thus
t2l r)y — wldo ’ —_ [ ”i —\/p
gz = [ L 0(m VO = [ 1 0(e 7= ).
and, by (8. 184),
Wz, yy=[ *d,T0r(z, y "L doTer (2, |p).
g™ (2, y) fo o % T (acolp)+f0 o T (2, y1p)
‘Whence by virtue of (D)

g (, )/)=fw %dpl‘lll(x, ¥1p)-
0 ~

Now I'®(x, y|¢)is a spectral function of f; the last member above
is hence a spectral representation of f [valid for almost all (z. y)].
Consequently g(x, y) is a solution of the iteration problem.

TreoreM 8.19. — Consider the iteration problem 8.1), where I (w, ¥)
is positive deﬁnzte (a necessary condztwn)

If q(@, y) ts a solution of (8.1), L, in x (in y), there is on hand a

corresponding decomposition (D) of a spectral function T of f,
say T =TT 50 that

» i . £ 1 )
5y~ [ d T,y —f\—dl‘lﬂ" 1A
7z, ) f PG,y 10— [ ey )
[mean square convergence in x (in y)] and so th‘at

A(z) _.f d)\l‘m(w, x | A) <+oo (for almc;st’ail z).

The converse. Envisage a decomposition (D), e = I‘"]’ S ) f
© aspectral functionI'™ of f, for which A(a) <+ w (for almost all a:)
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Then

ae'l “l
2T (2, y|2) ~ ¢(a, ¥), f L AT (2, y | A ~ g (),
A \/Ax (z, ¥ X))~ q'(x, y) i \/A> (zy y )~ q"(z, )

convergence being in the mean square inx (in y) to some functions ', ¢'".
The function

9z, y)=9"(z, 7)—q¢"(x, ¥)
will represent a solution of the iteration problem.

9. TaE 1reraTION PROBLEM (7 0DD). — We now turn to the general
iteration problem

(91) 9z, y) =f(x, ¥),
where 7 is apy odd integer, f(x, y) is given symmelricand is L, in z,
.in y; here _
™ = v—11(¢, y) de,
(9.1 a) " (z, y) fo 9(z, ¢) g1ty y) dt
M@ y)=q(z,y) (v=23...)

We seek symmetric solution ¢(z, ), L, in  (in y).
Suppose q(z, y) is a solution of required type. Define ¢,..(x, y) by
the relations ;

gm(z, ¥y)=q(z,y) [when|q(z, y)| < m],
gm(z, y)==%tm [when X g(z, y) > m).

‘Let the pmy, #m(z) be the characteristic values and functions
of gn(, ¥) \ ~
’ umv(w)=9mvf gm(z, t) Umy(t)dt.

We designate by I'»(«, ¥ |p) the spectral function of g.(z, y)
Y wm@um() (e>0)

'.\l m.‘
(@) . Tulzylp)={ °"<P~<F

- 2 Umy () Umy(Y) (p<o).

PSPm"<°

Since ¢(z, ) is L, in z, there exists a sequence (m;) 50 that the limit
@ - T(2, 7 |p)=lim Tn (=, ¥1p)
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exists; T is a spectral function of ¢(z, y). Inasmuch as we under- '
stand integrability of iterants to.imply absolute integrability, it is
noted that the integrals

‘q(J') },)l[u)_-:.f ...f lq(.l’, l,)q(l“ lg)...l[(tl..“y)ldt’...dll_|
[ 0
(t=2,....n)exist. F urthermore, -

lqm(-ry ) gm(ty, t)... qm(’l—n »)<Lq(x, 4)... q\(tl—h Il

Whence .
(9.2) hmq'"(z,_y):ql”(.r,_y) (i=1a, ..., n).

Inasmuch as the integral
1
[ #iw o di= g, )
o
exists, it is concluded that the integrals
1
(9.3) f ¢ (2, ¢) dt = g (a, x)

(i=2, ..., n) exist. Therefore ¢,,(x, y) is a regular approxima-
ting kernel [ that is, L, in (@, y)] of the singular kernel g'(z, y), the
latter being of the type to which the spectral theory applies (i< n).
The speclral function of ¢ (z, y)is )

rﬂ(-’»}’l?): 2 u,,,v(:z:) umv(}') (fOl'p>0),

(9.4) <P <P
Tz, ylp)=— 3 um(®)um(y) (forp<o),

N PSPy <0

I‘"‘(a:, y|o)=o0; this assertion is made on the basis of the fact that
the pv,,,, Un, are the characteristic values and functions of ¢ (=z, y).

For ¢ even one has I'/(z, y|p)=o for p<{o. The sequence (m;)
can be chosen independent of ¢ so that the limits '

(9.5) LI (z, y o) =Tlyn (i=1,...,n)
my

all exist; the second member here is a spectral function of q“lkx, Y)-
In particular, I'"(z, y|p) is a spectral function of- f(x, y), the
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approxunatlng kernel of f(x, y) being
Su(z, y) =g (2, y)-
Since n is odd, (9.4) gives us

Uiz, yle)= ¥ wm(@)um(y) (forp>o0),
0<va<P"l'

Tz, ylp)=— 3 (@) tm(y) (forp<o).
B S P <0 '

Designating the characteristic values of ¢*I(a, y) by An, and noting
that A, =, we have

1

__3n
, Py =Ny

where ¢,,, has the sign of &,,,. * From the above one obtains

) (2, yip)=l‘m<w, y 97')

that is
) : Lz, ylp) =T (2, y|p");

in the limit

(9.6) . L(z, ylp)=T"(z, y|p").

To every spectral function I'(z, y|p) of a solution ¢(x, y) there
f:o’nrespo,ilds a spectral function I'"!(z, y|p) of f(x, y) so that (9.6)
holds. If f(«, y) has just one spectral function, say I'™, then ¢(z, y)
will have just one spectral function I'; I' will satisfy (9.6). Whe-
never f has-only one spectral function, there is at most one solution.

Sirice ¢'¥(z, y) is positive definite and some of the higher iterants
exlst ‘the spectral representation

'

“.(;SJ) q’“’(w,y)—‘"—-[;dpl‘"'(w,ylp)
[T from (9.5)] will hold in the sense of ordinary convergence.
By (a) for p > o we have .
‘ Y um(@) umiy)= Tu(=,y|Vp),
' 0L pmy <VR .
Y (@ am(p)=—Tul@, y|—Ve) —om(a 7 1p),
—Vp<pm <0
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where .
om(z. y1p)== 3, tmv(@)um(y) [=o (forp=ph)]-
Pmy=—Vp

As a consequence of (9. 4; ¢ = 2) and of the above one has, whenp >o,

L2 (e, y1p) =T, ¥ [Vp) = Tu(a, ¥[=Vp) —anlax, y lp)-
By (9.5;7-=2) and (§) the limit

Iima,,,l(.r, ylpy=g(x,)ip)=o (o #p,*,,j,,,;j, v=1,2,...)

exists; it is of bounded variation (on every finite interval) in p; we
have

(9.8)  I™(r, yip)=T(a y|Ve) =T(z, y[—Ve) — el ¥ lp)
(p>0). Inview of (9.6)

n

#) oz, 5|~ ) — oz, y19)

[‘lnl(x’ ylp):l""'(z, >
and, by (9.7), (8.10),

(99) ql‘ll(z’ },)__.:f.idpl‘lnl(‘r’ )lpg> _fn.l dpf""((l‘, yl — p’_il>
o P o P .
= [ L 10,
_.)‘;‘

the integral in the last member beireg convergent. More generally, we
establish that the Stieltjes-integral representations in terms of T of
the qV'(z, y)(j=2, ..., n) all converge, a similar stalement being
valid for the ¢¥'(x, y)(j=2, ..., n) (for representations in terms
‘of I'lh'). Convergence in any of the above representations is asserted
almost -everywhere in the square o Z 2, y 1. Since ¢(z, y)CL,
in z (in y) the integral

] f'q*u:, 0y dt=g"(a, 2)

exists almost everywhere for o~z 1. By reasons as in section 8,
we obtain :

(®.10)  Ate)=[g"(@ 2)=] [ LTz 2|} <+

—e 3
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almost everywhere on (o, 1), which is a necessary condition for the
existence of a solution with the stated properties.

On letting 0 < /< and wriling
v - ne
Jolo=f

by (9-'4; i=n; P,':.v=; Amv) We obtain

ne

1 nr e . 1y 12
Q= f [ f LT (a, me dz ~ lim l f LIP' VT me d
/o m; Jy .

An Iz
1 e g :
—lim [2 "L‘umv(x) umv(}')] d.l‘,
my J, y 17'

mv

where the summation is over values v for which A, is on the inter-
vals (— 7, — /), ({, 7'); one further has

b L
n

;1 L — . 1
Q"’éhmE 2 Tupy(v)=lim Sd, T (x, ¥1})
ml v ml. )\;‘

—1 v
:<f +f >i!d1r['”(.z',1'{7\).
- l 17,

Since the integral (9.10) convérges, it is seen that
Qh¥<e [for &, !> I(€)].

‘Therefore

CEDE 70z )~ [T LTy b

=)n

in the sense of mean convergence in z (in y).

Consuder now the concerse. — Envisage aspectral function I'"(z, y|2.)
of f(x, y). This implies that for a sequence f,.(x, y) of regular
kernels converging to f(x, y), and having characteristic values and
functions A, Un, there exists a sequence (m;) so that the limit

limIg (2, y | A) =T" (2, y|2)
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exists; here

Loz, y 2= Y, um(@)um(y)  (ford>o0),
0 Ay, <M

Fr'(xy y 0 =— 2 Umy(Z) Umy(y)  (for 2 < o).
A, <0

Assume that for this spectral function T (9.10) holds. Then, repea-
ting the developments preceding (9.11), with the present meanings
of the symbols, we conclude that, as { > + oo, the function

!
9z, y)= dxl“"'(w haRY
ll"

converges in the mean square in & (in y) to some funétion, which we
shall denote by ¢g(x, y). It will be now proved that if the integrals

(8.12) lg(z, )1 (vzr—1)

are L, tn x (in y), necessarily q(z, y) will satisfy (9. 1)
It is noted that

1
q'(x, J’)=£r£-dp (e, y|p") (l’: l").
Thus '
(9.13) q(x, J)Nf édP ' (x, y|pm)

in the sense of mean convergence in x (in y); accordingly
8(z, ylp)=T" (2, y|p")
is a spectral function of g¢(z, y). Hence, in view of the statement

with respect to (9.12) and by virtue of the developments in
(C; 124, 125) we conclude that the integrals

fpi,dpe(z,ym G=1, ..., n)

converge (in the ordinary sense) to the iterants of ¢(x, y),
9""(‘”.)’) U=12,...,n)
respectively. In particular, for j = n one has

7" (x, 1)—f— —dPO(.z',ylp) f—'%dxﬂ(x,y ).’-:)zj‘”%d)‘f";”(x, yIn).
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The last member here is a spectral representation of f for almost

~all(z,y). Thus
qm'(‘i': y) =f("l" )i

q is a solution of (9.1).

Tueorew 9.14. — Consider the n-th order iteration problem (9.1),

with n odd.
: If there exists a solution g(x, ), L, in x (iny), then f(x, v) has a
~ spectral function T (z, y|X) so that

A(z) = ) -l—,d1 Iz, z| V) <+
I
(almost everywhere) and so that

ICEOISY RT3 LIERY
- ln

(mean square convergence in x, in y).
The converse. Let T'"'(x, y | \) be a spectral function of f(x, y) for

which A(x) <+ o (almost everywhere). We then have

f_npldp,rl"'(w,ylp"), i e.[_.édur‘"'(d‘,}’ll)
[ef. (9.13)]

convergent in. a mean square tn x (in y)to some function, say q(x, y).

If the integrals :
' lg(z, )M (v£n—1)

‘are L, (in x, tn y), then q(x, y) will be a solution of the iteration pro-
blem. , .

Norte. — The solution is unique if f(@, y) has just one spectral

function i -



