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On certain arithmetical functions

due to M. Georges Humbert;

By M. A. BASOCO.

1. Introduction. — The contributions which M. Georges Humbert
has made to that part of the theory of numbers which lies in close
relationship to the theory of the elliptic and theta functions are well
known ('). They are rich in interesting results and in suggestions
for research. Thestarting point for what followsin this paper, is to be
found in a brief note which he published in the Comptes rendus de
I’Academie des Sciences (*). In this note, M. Humbert has pointed
out the existence of a certain class of entire functions which have
some interesting arithmetical properties, and which are related to
the theta functions of Jacobi by means of certain functional equations.
These functional equations will be shown to have uniqué solutions
and may, therefore, be used to define the functions of M. Humbert.
‘When these functions are expressed in the form of Fourier Series,
they resemble in structure, those for the Jacobian elliptic functions.
They differ from these, however, in that their Fourier representations
are valid throughout the entire finite complex plane. A further
difference of interest lies in the fact that their arithmetical form
involve incomplete numerical functions of the divisors of an integer
(in the sense of Hermite).

(') See, for example, his important memoir in the Journal de Mathématiques,
6° serie, 1907.
(*) Comptes rendus, 158, 1914, p. 220 and 294.
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In the present paper we wish to extend and supplement M. Hum-
bert’s note by giving a complete set of these functions as well as the
functional equations which serve to characterize them. Advantage
is taken of the fact that the functions of M. Humbert are special
cases of certain others which the writer obtained a few years ago in
a paper (') dealing with a set of pseudo-periodic functions in two
variables, to relate them to the theta functions by means of certain
identities. The arithmetical equivalents of these identities are also
obtained in the form of relations involving arbitrary functions in one
variable. These relations, referred to as « paraphrases » or formulas
of the Liouville type, are of interest because of their relative simpli-
city and also because the partitions involved refer to the representa-
tions of a number as the sum of five integral squares.

An immediate consequence of the analytical form of the functions
under discussion is a serles of relations belween the greater integer
function E(«) and incomplete numerical functions (*). These are
believed to be new; a partial list of these results is given in para-

graph 6.

2. The functional Equations. — In what follows, the notation is
that ordinarily used in the theory of the Jacobi theta functions (*). .
The period =7 is such that o < arg <.

The set of functional equations considered has the form

(B m )= (e,

) Uk(s -+ 72) = (- 1t A=) + FE(s),

where a, b may take the values zero or unity, and F{)(z), presently
to be defined, is an expression which involves the thetafunction 5,(z).
We shall denote the integral functions satisfying these equations by
the symbol H%(z). These are readily found on assuming series

ab

(1) M. A. Basoco, The functions referred to appear as cogfficients of the
logarithmic derivative of 3,(y) in the expansion for O3, (x, y) (Admerican
Journal of Mathematics, Vol. Bk, 1932, p. 2f2-252).

(2) M. A. Basoco, In this paper some similar relations inpolving complete
numerical functions are listed (Bull. Am. Math. Soc., Oct. 1936, p. 720-726).

(*) See, for example, Wittaker-Watson, Modern Analysis (Cambridge).
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solutions of the form

k=
H®(z) = Z A eiks (i=y=1).
==
These solutions, for (a, b)=(1, o), (o, 1), (1, 1) are unique;
for (a, b) = (o, 0), the solution is completely determined to within
an additive constant. I‘or, suppose that for a given (a, b) two
distinct solutions exist. Denote their difference by D(z); this would,
likewise, be an integral function and would satisfy periodicity
relations of the form
D(z+47 )= (=1 D(z),
D{zs+rm)y=(—1)"D(s),

and would hence be an elliptic function. This would evidently
reduce to a constant. I'rom (A)it follows easily that this constant
vanishes, except for the case (a, b) = (o, 0), when it remains unde-

termined. In this case we have selected the solution which vanishes
for s =

L :
3. The /unctwn F& (z) — Let A(zs)=¢q ‘e and p(z)=q 'e*",
where ¢g=¢7, |g|<1. These expressions are the multipliers

associated with the theta functions of arguments 5 -+ 7%— and 5 -+ 7=

respectively.
‘We define the functions F) () as follows

PO (s) =1 — p(=)]| To(s) — 24, () =20h(5)F(5),

P (sy =20 i ()3, (5) 1], I ”( Y= |14 p(2)] 71 (5),
F () =20 (s)Ts(s) —1], "2 (5) =71 — p(z)] Z2(2),
Foo () == i1 p(5) ] 3 (3) - 24, Fil(z) =24(5) 7:(5),

P () =14 pd5)] o (=) P (s) =2k(s) Fe(3),

) (8) == 200 (3) T (5), - 0 (s) e — 71— p(5)] 3. (=),
F) (z)y =02 (2)T,(5) 2 z) == o p(3)] 52 (5),
Iy (3) =4 [[*'*{J-(J)JEJ';:(Z), FPN(s) =200 (5) 35(3)

These expressions satisfy the consistency condition
Pl — (5
Fey(s +m) = (—1)* F(s),

which is implied by equations (A).
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4. The solutions HY)(z). — 1f in equations (A) the preceding set of
functions F)(z) be used, we find, following the method suggested
in paragraph 2, the trigonometric form of the solution of the corres-
ponding funclional equation. The solutions thus found are valid
for all valuesofz. Theinteger nrangesoverthevaluest,2, 3,4, ...,
while m ranges over the number 1, 3, 5,7, .. ..

=

,'1 (]715-}—211+ (/719 .
’ (8)( rY — _
(1" H) ()= OZ — sin 213,
n=| /
) - r/nf-‘—:-n .
! HA (=)= Y sin 2 123
(2) l)()( ) 4,‘/_411_(].1” ’
=
o
. o ~ -2 (ln‘—‘ .
/ HP () == 2 T — 9 Gnans,
(3) 5l (=) 25 == _
==
: ¢ gt en
4 HE (s) =144y 2 cos 2 nz
([‘) l)vl( > +’!‘-f_1 I—i—([ﬁ" 0% 3
n=1
” 2
/ B2 — AN : -
(5") H(z) = 4; Pp—T sin ms,
n=1f
- mr-am lli_!
. N gt gt
(6") H®(5) = 2}-‘ /—ITTHL sinms,
me= A /
- nrte-un
. ) N g * cosms
(7) W= 4y 1 ’
e ] g
me
m® =4 m=
o N~ gt —qgt
(81 HP) (s) = 2 » T " 7 ginms.

ad I - (]m

e

The remaining functions HY) (z), ¢ =0, 1 may be obtained from the
. . . o - E . . .
preceding upon replacing z by s+ In the interest of brevity we

omit wriling these in their analytical form; they are, however,
listed below in their arithmetical form.

8. Arithmetized form. — In order to write the arithmetical form
of the functions HY,(z), we introduce the notation :
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« and {3 are positive integers of the form 4% -+ 1 and 4% -+ 3 respec-
tively; n and m are as in the preceding section. X' refers to the
conjugate divisors (d, 8) of n and (¢, <) of « or @3, such that & <{d,
< t. Further restrictions on (d, d) will be indicated as needed.
-¢(n) is unity or zero according as n is or is not the square of an

h

integer. (— 1|h) = (—— 1) ° h if is odd.

(1) H@(s)= Zq” (n)sinz2\/nz+ ;Zq”% Z sin 2 8:}

n=1 ()

(6 —d=o0, mod2);

., N ) Lo N - )
(2) H@¥ (=)= Z;Zq {Esmz(u; (6 —d=1, mod2);
(rn)
* ‘ —5
(3) UP(s)= ——-22}(1’“(n)sm2yn~ —4\ q”% Z (—1) * sin20:z
n=1 {n) :
(0 —d =0, moda);

. " / G =1 )
(4) Hi,‘"’ﬁ(;):l—l—(;Eg“ ; 2 (—1) * cos2 3;} (0 —d =1, moda);
() )
B

6) W= 4% N sinss |
(6) HZ(s)= 2Zq%s(a)sin\/5:+42f/%{2
() N = Q,M (S

(8) HP(s)= —22‘7 U)Sln\/a.-—qzq 2/(—-1),;"3sim': %,

(9) HP(=)= 22 gre(n) (—i1W"sinayns + [;Z r]”{ Z (—1)?sin20s }(
(6 — d =0, moda);

14
sinTs l;

—

COST3S },

(10) HM(z)= /.) " { 2/(— 1)¥sino 8:} (0 —d=1, mod2);

(1) 1) (z)= _22,]1:3(11)(_.l)v'/isinZ\/ﬁs - &Z '2(—1)

(0 —d =0, mod2);

-0

2 lsmz 0z g

d+06—1 '

(12) H (5 )*14—[;2(/”%2’(——1) * cos2 9z ‘ (d ~0=1, moda);
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B

'{21(——-1 | 7) costz };

(14) H{(z)= 22(/_‘5(01)(~—1 ’\/-&)cos\/&z

(13) HR ()= (D¢

-+ 42 (/? { 2 (— 1i7)costs 5(;
(15) H‘,,”,i(;) = — [;2 g* ? 2 (—1) * sints $;
(16) U (=)= 22 qie(@)(— 1|y x)cosya s

-4-4-277%2 (—1)

{+7—2

CO8T5S ; ‘

6. Application to the function E(x). — The analytical form of the
functions (1') to (8') and of the remaining eight deducible from them

by increasing the argument by :i, suggests the application of a devise

due to Hermite ('), which yields identities involving the greatest
integer function E(«). Hermite’s method depends on the folloving

relations
u® _ZF (’L'*”“_b)un
(L— ) (1 — u*y il « -
{n)
I 7 ~\N'p (n “+ ¢ — b) "
(1— 1) (1 u“) —2-‘ - 2¢ ’
()

where a, b are positive integers and

Ei(x)=E(22) — 2E(x) :E(w-{—- ;) — E(a).

‘We list below the identities deducible from the functions(1")to (8")
and their equivalents (1) to (8). The remaining identities are
analogous in form.

Let F(z) be an arbitrary function; « and 3 are as before as well
as (d, ¢) and (¢, ©);  is a positive fixed integer and r=d3. Define

(*) Hermite, Acta Mathematica, t. 5, p. 297-330; J. fir Math. t. 100,
p. 51-65; OFuvores, t. &, p. 151-159.
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P;(x, ), Q;(x, 1), R;(2, 1), S;(x, r) as follows
Pi(a, ry=c(r)F(a\ra) + QEIF(zaw) (r=dd, d — 6 =0, mod 2);
Py (e, 1) :2,.[7(26:1:) (r=dd,d—d=1,moda);

! d—5
Qi(x, ry=ce(r) F(zv?af) —+ OZ (—1) ® F(202) (r=dd,d— d==0, mod2);

Qa (e, 1) :2,(— 1)61-‘#F(2d‘1:) (r=—dé,d—o=1, moda);
Ry, )= F(r) C (p=ny
Re(z, o) =¢(2) 1“(\/;-1:) +- 22/1’(79:) (ot = t7);
S (@, )= (—1) T F(sa) (8= t0);

[ —
S, (i, ) =¢e(a) F (V’Egv) -+ 22(~ 1 - Fre) (a0 = t7).

The identities in question are as follows, n being an arbitrary
fixed integers; s takes the values 1, 2, 3, 4, ..., while pranges over
the positive odd integers 1, 3, 5, 7, . ..

[yri=1—1] (vl

(a) ip.,(w, DETEDY Jx('lg >l<(2sx)—+—2F(2sm),

(b) D Palw, =X E(”t%g)b‘(zm);

P e (
.(d) EQz(J’: r)== 2‘ <n—+‘;g>—zE(.’l_+_§S_~"_f)}F(zsw);

Il

r=1 5

() X Qulz, r)= :Sﬁ);l*‘(zsz),

i

e

(e) Eam(x, B) = % <Q:iﬁ_i)p(“‘,,);
asn psve -

(/) ERa(x,a): ‘lgl {1+2E<%>;F(pm);

Journ. de Math., tome XXVI. — Lasc. 3, 1947. 39
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pea
ﬁ,(n—:—Zu.—p‘l fn - op—pt
) WS (e, 8)= E ‘—)—z]m(—) F(p);
“ g o E 2 b _ 3 (o)
agn by
_ o p( = g (=
(h) gsm,a)— 2 (g )+ 4( - ){F ().

An interesting special case of the preceding formulae arises when
we take F(x)=a, where £ is a positive integer. Thus, for
example, relations (a), (b) give rise to the following

[yasT—1] [¢/n]

(a') 2)(1(1'):2 2 E<?T_Sf)s/c+zsk,
s=1

r—=1 s=1

() ,. ixg(r): > L(ﬁ—ts-;f—>s‘

r=1 cs=l1

where,

k ’
X, (r)y=c(r)r+ 22 o4 (r=dj, 0 <d, 6 —d=o, mod2), -
/ .
X, (r) = 2 o  (r—=ds,d<d,d—d=1, moda).

The incomplete numerical function X,(») may, therefore, be
expressed in terms of the greatest integer function

L ' n—4s—st . ‘n—s*+s—1\| ,
Xz((l/) ——Z{E(T) E(—-QS )‘S‘.
Similarly for the others.
7. Theta Identities. — In a former paper (') the writer obtained

the trigonometric developpement for sixteen theta quotients of the
form :

Regarded as functions of x these quotients are doubly periodic

(t)y American Journal of Mathematics, loc. cit.
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of the Third Kind (Hermite’s nomenclature) and may, therefore, be
developed into a trigonometic series by the method of decomposition
into simple elements due to M. Appell (*). In a paper published
elsewhere (*), the writer has given a simple analysis of the case when
the functions have more poles than zero in a fundamental period cell;
this is the case relevant to the theta quotients under discussion. We
may obtain in this way, for example, the following expansion

- * (2r—+1)*
e SolZ+y) .S (0)) Ly *
“' Sz(x)'suy)_“:l(y)i_z (o

e—terHlY  ctn % x—(2r-+1) 2

0|3

20 4-1)2

-+ 2 (—1) g " (ar—+1)e ¥+ ctn f x— (21 +71)

{

1
0

3

=

= {2 —+1)2

-+ L'E (—1)y+tg * e~i2r+1y cosec? % x—(ar—+1) =

i=—ow

-

ol‘]

The result may readily be transformed into its arithmetical form;
we find after a slight calculation that

m-—1

5 m#
3'{1"’.#(71‘)1 ZZ(AI) mq

1 5(7) = smmy—%—zmzl‘q {2‘ (—1 T (t+ )sm(‘ T+T}’)}
5(0) = 2 s (s
+-° ) 2’"2"(‘1) g " cosmy - 42(1 2(—1 cos( 5 ;z:—i—gy) ;
where m ranges over 1, 3, 5, 7, ...; « over 1, 5, 9, 13, ... and ¥
refers to the divisors ¢, =, of « such that v<¢. This form of the
expansion is valid for all y and all  such that

— ;J(ﬂ:r) < J(a) < ;J(nr).

If now, we set « = o and change y into z, we find the following
identity which relates the function H{!)(s) to the theta function $,(s)

(') P. ArpeLl, Annales Scientifiques de 1'Ecole Normale Supérieure,
Série 3, 1884-1885; Mémorial des Sciences Mathématiques, fascicule XXXVI,
Paris, 1929.

(2) M. A. Basoco, Acta Mathematica, . 57, 1930, p. 201.
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V(2)
T (5)HY (=) =53535,(5)
4 o .
——231(2)211" c(a)(—1) * sinyoas

+? (—1) (t+ )sinTs }

In a similar manner we may obtain the following identies; the
notation is as in paragraph 3,

T\ (5) 0N (=)=

7, () iR (=)

% (5) By (5) = —
= (s) B (5) =
7, (2)
), (5) H9) (5) =
7 (s) Wi} (5) =
7, (s) Y (5) =

%, (5) Mg (5) = —
% (5 B (s) =—
%, (5) H(5) =

7, () M (3) = —

H% (=) =

A7

n—1i

( +-3) sin203 }

e,
523
J

- 45 ( )Zr/"} N (—1)

(n=dd, s —-d=1, modz);

I3 /;_r, 1

[=%]
<o

(d+0d)sinads s

I3535,(5) 4+ 23 (5)2{/?{ 2/ (t4+7) cos"f
53937, () — 23,;(.:)27?{ Z'(—n’;f;(wf) sints }
353:132(:)—23::@)2’]?{Zl(— l)lj: (L= )cos“$
F3935,(5) — 25:(5) ?{ZIF*H") (¢+7) sint. i

1

5(1)(—1 VoW siny/ o }—> (—1]7) (L+-7)sints

b

LT —2

;c(a)(—x‘\J)y/asuua T\‘ (—1)" ¢ (l—l—r)sim’;%;

%
i

[

;_(;)Zqzé5(1)\/;605\,/';;+2’

5y(2) +25:(2) D g {e(z)\,.«';COS\';:+2'<—x)“‘;
;‘Hx ) — 12(/”[2 (—1)
)+ a;;(s){h(s)%Eqﬂ[Z'(—‘n

(t+r7)costs

L\7

(t+7)costs

E
i

(d -+ 6) coszov] ;

/1+’1

* (d+0)cos2ds ]

O o
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where, in the last two identies we have set

@

Y(5)=1— 42(—— 1)"g" ncosans, da(g)=1— {;Z g ncosan:.

n=t n=1

The above set of relationships is incomplete, since no results
involving H® (z) are given. This case is exclused by the method
which has been used to obtain this set of formulas.

8. Paraphrases or formulas of the Lioucille type. — The theta
identities given in the preceding section have rather simple arithme-
tical equivalents which may be obtained through the method of
paraphrase. The essence of this method lies in the application of
the folloving theorem concerning trigonometric identities : if f(x)
is an even function, and g() is an odd function of z, and if f( ),
g(x) are finite and single valued whenever  is a rational number
(zero included), and if further g(o0) = o, then the folloving identities
in z

M N
4= 2 b;cose;: = o, 2/.',- sinr;s=—o,
1= | i=1
where ¢;, r;, b, k; are rational numbers, imply respectively
M N
ay f(0) -+ Zb,-f(('i):o, Z/{,-g(ri):o,
i—=1 i—=1 '
M, N being finite integers. Beyond the conditions stated f(x)
and g(x) are entirely arbitrary. This is the simplest instance of
a much more general theorem proved under very general bypotheses
by Bell (*). _

The application of this theorem to the trigonometric identities
implicit in the relations given in paragraph 7 gives rise to certain
formulas of the Liouville type of a rather simple structure and of
some interest in as much as the partitions involved refer to the

() E.T.Bg, Transactions American Mathematical Society, Vol. 22,
1921, p. 1-39 and 198-219; see also his « Algebraie Arithmetic », Collogium
Publications of the Am. Math. Soc., Vol. T.
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representation of numbers in certain linear forms as the sum of five
squares. The notations is a follows : o, 8, m, m,, n, n,, ¢, 7, d, &
are positive integers; « =1, mod4; 3 =3, mod4; m and m, are odd;
n and n, are unrestricted integers. ., x;Zo are odd integers; w;” 0
are even integers; A, 5;20 are unrestricted integers; (d, ¢), (¢, <) are
conjugate divisors such that 8 <d and ©<t, © being always odd.
Further restrictions on these divisions will be indicated as needed.
g(n)=1 or o, according as n is or is not the square of an integer.
a(n)=1 or o, according as n is or is not the sum of two integer
squares. f(z)=f(— ) and g(x)=— g(—=x), but are otherwise
arbitrary. ’

The partltlons ower which the functions in the paraphrases. are
summed are :

(I o=+ Wi+ Wi+ wi 4+ wi= i+ 4do
(6 —d=1, moda);

(I1) . B2t a4+ i wi el = 4R+
(111 2m =&+ &3 - w7+ Wi+ vio= i tr=pl+ mi,
(1v) n=2z}+ 33 + 55 4+ 5} + 55 = AP+ dd="N>+ n3,

(6 —d =0, mod2).

The paraphrases follow, the Roman numeral on the left referring
to the corresponding partition :

2(—0&*—1"" flay) = 42'<~1>%ﬂ<fz+a—mf(zaw)we(a)\/&(—xW)fwo‘o;
N T e AN e T i g+ ac(0V Sy

> Sen= 2 (tc—bh) fleah);

N T T gey = Y 0 T (e b g(e 2k

S0 T e =—a X 0T () fr k)

T2 —1

Z(——I) ¥ (t+v—4h)g(t+2h);

i

(N7
!
1
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) Y —n* foy= (=0T (e ap)frtp)

1y - U

‘l—:za(zm)E(‘[) (my— @) fmy - )

iy T fwg= 2 T (b2 S p)
+2a(am) ¥ (— DT () fOma s

) B Sivy= 2 (17— ap) f(s+p)
- 2atem) Y (mi— ) flmi+p;

iy o T = oY 0T s w)
- 2a(am) 3 (m— ) f(mi+ o)

d+G—2h

(V) F(=nars fla) = fl0) + 2e(n) (— )V f(Y) + ba(n) 3 (— 1)+ (h — m) f(h+m)
’ !
' *42 (—1) * (d+0—2h)f(d-+h);

(IVe) D (—nmrats fla) = f(0) + 2e(n) f(Vn) + ha(n) X, (= ni) [+ m)
d—1n

— 42'(— 0 (d+0—2h) {3+ h).

9. Conclusion. — The preceding formulae with f(x)==1, yield
enumerations relative to the number of representation of a number
as the sum of five squares. The most interesting results are those
deduced from (II,) and (III;). Thus we have the folloving theo-
rems (') :

TaeoreM (). — The number of representations of a number 3 =3,
mod4, in the form x* + y*+ 5~ u®+ v*, wherein x, y, 570 are odd
and u, vZo, are even, is given by the expression

2@ (BY+4DP(B—4.10) +4D(B— 4.2 +4P(P—4.3)+. ..

(1) The results appear to be supplementary to the enumerations given
by Hermite ( OFuvres, b, 1920, p. 237-238) and by Bell (Am. J, Math., Vol, 42,
1920, p. 177).
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the sum being continued so long as the argument remains positive; the
Sunction ¢(3) is equal to the sum of all the divisors of (3.

Tucorem (3). — The number of representations of a number am
(m odd), in the form x* 4 y*—+ u®—+ ¢0* + w?, wherein x, y - o are odd
and u, v, w0 are even is given by the expression

G®(2m — 1)+ 4B (am — 32) + 4P (2m — 52) ...

where o(n) is as in the preceding theorem, provided 2. m is not repre-
sentable as the sum o f two squares. If, howewer, 2m is so representable,
the quantity G(2m) must be added to the preceding expression, where

G(2m) :42.1:,

the sum being extended over-all solutions of cm =2+ v*, @, y >o

and odd.



