
W. J. TRJITZINSKY
Theory of functions of intervals and applications to
functions of a complex variable
Journal de mathématiques pures et appliquées 9e série, tome 25 (1946), p. 347-395.
<http://www.numdam.org/item?id=JMPA_1946_9_25__347_0>

Article numérisé dans le cadre du programme
Gallica de la Bibliothèque nationale de France

http:// gallica.bnf.fr/

et catalogué par Mathdoc
dans le cadre du pôle associé BnF/Mathdoc

http:// www.numdam.org/ journals/ JMPA

http://www.numdam.org/item?id=JMPA_1946_9_25__347_0
http://gallica.bnf.fr/
http://www.numdam.org/
http://gallica.bnf.fr/
http://www.bnf.fr/
http://gallica.bnf.fr/
http://www.mathdoc.fr/
http://www.numdam.org/journals/JMPA


  
Theory of.fuhctions of intervals and applications to functions

of a com;deæwariable;

BY W. J. TRJITZINSKY.
(University of Illinois, U. S. A.)

1. INTRODUCTION. — In this work we shall establish two main
theorems on functions of « intervals » and shall apply them, together
with some other considerations, to problems of analyticity and to
problems of representation of functions (not necessarily analytic)
With the aid of « Cauchy double integrals »; furthermore, we shall
study certain integral equations, leading to some more general
representations of functions of a complex variable.

In the field of functions of intervals reference is made to 'S. Saks (‘),
in the sequel referred to as (S). An interval I in the Euclidean space B…
is defined in (S 57). In the plane of:; =æ+ l‘y, that is in R,, [ is a

rectangle with sides parallel to the axes. We shall use regular
sequencesof nets [e]. (S, 57)]. Ajîgure is to denote a sum of a finite
number of intervals. Functions of interval,— F(I), complex- or real—
valued Will be supposed to be additive; that is,

F(I1+ 12)=F(11)+ F(Ig)

for any pairofnon overlappingintervals. Such functions are extended
in an obvious way to figures. F(I) is said to be absolutelycontinous
if lR\=meas. R<8(e) (for figuresR) implies that lF(R)| <a.
F(I) is continuous if the relation |Il < 3(e) implies

l
F(I)\ < &. 

(1) S. Sms, Theory of the integral, Warszawa, 1937.
' Journ. de Math., tome XXV. — Fasc. 4, 1946. 44
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Clearly F1s absolutely continuous (continuous) if and only if the real
and1maginary parts of F are absolutely continuous (continuous).

ln sections2,"o, 4 the developments relate to the theory of continuous
tunctions ol intervals. Theorem 2.2 constitutes an extension of
a theorem ofRidder, while Theorem & . 8 representsa generalizationof
a result of Besz‘covùch [cf. (8 193 )]. In section 5 we generalize the
notion of « length of a set ». We introduce {J.—length (Definition 5. 1),
some of the properties of which are established in Theorem 5.6;
u—length—-1s used… Theorem 4. 8 and… some subsequentresults.

ln section5 we establish conditions under which a function f(s ),
continuous in a domain G, is analytic. The theorems are 5.3 and
5.12. The first extends a result of .I. Wolff and the other that of
Besicovùch (S, 193“).

.

In section 6 it is shown that for certain classes of continuous
functions of a complex variable there are on hand representationsof
the form

ÎÎ Ÿ(J')îl—Jt_d—lz+ a(_;)
t‘ ' "

[a(:) analytic; J =J.+ iJ,]. Such representations are given (With
the aid of Theorems2.15, 4.25) in Theorems 6.4, 6.10, 6’.6.

Integral equations of the form (7.2) are then studied. The main
results are embodied in Theorems 7 . 12, 8.10, which present
conditions under which (7.2) is equivalent .to a regular Fredholm
integral equation ( 7. 3). These developments lead to certain further
representations (8.14) for functions f(: ) belonging to a class R
(Definition 7. 1) or to a class B,, (Definition 8. 1).

Important deveIOpments, relating to the problems treated in
sections 5, 6, are given by V. S. Fédorofl” (') along lines different
from those of the present paper.

2. Exrsnsmu or Rmnen’s ThE0REM. — Asm (8), a normalsequence —

of nets N ={N,.}IS a certain kind of regular sequence of nets N,,
(k—_ 1, 2, . . .), the intervals of N,. being closed and non ( ) V. S. FÉDOROFF,Rec. Math. de Moscou, t. 2 (44), 1937, pp. 521 5—41; this
work contains au extensive bibliography.
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overlapping; those of N,… are formed from those of N,, by subdivision
[for details see (S,188)]. F(æ), Î(.r) and F'(æ) will denote
the ordinary lower, the ordihary upper derivates and the ordinary
derivative, respectively, of any given additive function 13 of intervals
(S, 106); thus
(2.1) E(æ)=l. b. A, Îv(J- :u. b. A,

' where A denotes any number for which a “regular” sequence of .

closed intervals I,,, containing a: and such that
(2.1a) ô(l,,): diameter of l,, —+ u,

exists so that
_

(2.111) limw=A.,. il";
A sequence of closed intervals is said to be “ regular ” with respect to
a “ parameterof regularity ” in accordance with the familiarconcept '

of Lebesgue (S, 106); wheneverE =Î‘, we have F’=_lf=F.
We shall establish the following generalization of a theorem of

J. Ridder [cf. (8, 188)]. .

Tascam 2.2. — Suppose N =’ Ng; is a normal sequence of nets;
let g(æ) be summable in B… and let F be a continuous additivefunction
of an interval such that
(i)

_
(N)Ê(æ)>—œ at allpoints .r,

eïcept those of a set D(, = sum of a denumerable infinity (at most)
ofhyperplanes H,—, parallel to either of the acces, and
(ii) . F' (x)à g(æ) (almost everywhere).

Then
(2.3) F(I)è/1g(æ) dx (forintervals Ic_P)[

1

In (i) (N)Î denotes the lower derivate, defined with the aid of the
intervals of thehets (N).

In Ridder‘s theorem…D, is a denumerable set of point..
' Let P be the set, necessarily closed, so that, ifp is a point ofP,in
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every neighborhoodofp there is an interval I so that

(2.4) F(l)< [g(æ)dJ-.
— |

For intervals [, for which I°: CP (I°: open interval) one has

(2.60) F(l)èfg(æ)d.r.
!

The latter fact is established in (5, 189).
If the theorem is not true P is non empty. We shall nowproceed

under the supposition that P # 0. As in (8), given integers I:,
le (> 0), let ’

(2.5) Nx—,/.=El,

where the sum is over all 1 of the net Nk for which
(2.511) ' F(l)>-—h|l|.
The product

N"== “Fg. N…
is closed since N,_._,, is.

Let .r denote any fixed point in CD…; it will be established that
(2.6) .1‘C N"° [h..:- h.,(æ) <+œ].
ln fact, by (i)

lim — ———*;>—œ
! ll _

for intervals [ of nets (N) not containing .r; thus

lll(I—ll)è_Y—E [a.e.f.l,0f(N)’3æl'

Here and in the reçue! (a. e. f.) will mean ‘ ‘for all except a finzte
number of”. — Accordingly, there exists an integer h.,(æ) (>y — &)
'sufficiently great so that {

F(l)>—h.(æ)lH [for all [, oka(k= Il… ho+ 1, . ..),3æ].
By (2.5) and (2.5a) an interval 1 of N,., involved in the above
relation, is an interval ofNM. Such an 1 contains a:; hence æc N…;
this being true for all [fè/}… :» will belong to Nm,hoN,,…,he. . ..
Whence (2.6) holds.

_
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Since every x of CD., is in some N’“°[h: h,,(æ)], one has

CD., : ÈN"a:!
and

a

R… “:ZIN"+ Do.
[I:]

By hypothesis D0 = H. + H2+. . .; thus

(2.7) Pcu…=z F..
!:

where F.-=N+ H, is a closed set. Terefore by Baire’s theorem there
exists a portion SP, where 8 is an open sphere with a point P“ ofP
for center, so that for some le

(2.8) o;ÉSPcF,_—=Nh+nh.

We shall now prove that a portion SP eæz‘sts so that
(2.9) o;ÉSP<N/a
If H,l does not contain Po, then (2.9) is secured by taking the radins
of S so small that H,, lies exterior S and on acting that P,, is a point
of P. Thus, consider the case when H,. contains P.,. The set
H,..C.Nh is open, when considered as a hyperplanar set (i. e. on H,.),
since CN" is open in B…. Let P' be anypoint of H,. . CN". Designate
by I’ au interval on H,l so that I’° (i. c. the interior, on H,., of [' )
contains P’, while

l'cH;,.CN".

Let I be a non degenerate interval in S so that the intersection of I by
H,z is I' , [' not being a face of 1, while

1 c C'N'l.

Such a m—dimensioflal interval I exists since the closed m—1-dimen-
sional interval I' lies in CN”. We decompose I into non overlapping
m—dimensional interŸals l,, la, 13,

1=1.+_1,+1.
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so that I’ is not & face of either I., I._,-, 13 and so that I' constitutes the
intersectionof 1, with H,,. One has

(a) F(l)=F(l.)+F(I,)+F(I;).
Since SP: N"+ H,. [by (2.8)] and since the intervals L, I…_. have no
points on H,. and lie in CN,., we have

\

l. CCP, l,cCP.

'l‘hus by virtue of (2 . -i a)
(5) F<L—>>.fg(æ)dæ (J‘: 1,2).

':

Let [, tend to l’; then by continuity of F it follows that
lim F(l3) =F(I')=o.

Hence as a consequence of (ou), (B)

F(l)èlim ._ g(.r)dæ=fg(æ)dæ,

This relation will hold for all non degenerate m-dimensional intervals.lcl, such that, ,I°DP’; by (3) it holds for all intervals in CN”.
Accordingly P' does not satisfy the conditions stated in connection
with (2. 4). Having established that P’ C CP and recalling thatP’ is
any point of H,.. CN", we conclude that .

(Ï) H},.CN"CCP.
Now

SPcN"+ Ht: Nh+ ….CN";

by (y) no point of SP is in H,. . CN”; hence SP C N”. We finally recall
that the center P.. of 8 is a point of P. Consequently (2 . 9) has been
established. -

As in (S, 189) consider the function of intervals

(2.10) - H(l)=F(I)—+—h(l)f|g(ay)ldæ;!

here h is the integer involved in (2 . 9). Il [( C 5) is such that [° : CP,
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then by (2. 4a)

F(l)èfg(æ)d—vèf— lg(æ')ldw, …) +f|é'(—L‘)lt'—l°èfl] | I

and, accordingly,
(2.!1) H(l)èh(l)‘=o.
Now consider an interval I.,(c S) belonging to one of l/æ nets N.,
for v}_h, such that 13 contains a point p of P. Then by ( 2.9) p is
a point of N"; in view of the définition subsequent to (2.5 a)

[' C N‘I,/c°

As a consequence of the statement with respect to (2.5), (2.50)
IV is an interval of the set N…. and

F(II)>°“ " ‘ lvl;
by virtue of (2. 10) one thus has

2. H Iv > ’;L‘ d'>_ .( …) ( > ft… n .L_o

Suppose now that 1 is any interval in 5. One has.
(2.13) I=lim.,l,

where .,1 is the sum of all intervals .,I,- of the net N., contained in 1;
.1 is an interval cl. The .,IJ- for which .I°cCP, will be designated
by VI}; the other VI,—, denoted by .,I}, will contain each a point of P in
the interior; (2. 11), (2.12) will apply to the .I}, .,I}' , respectively
(for vèh). Thus H(.I)èo. By (2. 13) and since H(I) is continuous
as a fuction of interval and thus vanishes on the faces of 1 one has

H(I)=limH(.,l)èo
and

.

(2.14) F(l)è—hlll—f1g(Œ)ldæ!

for all IcS. As in the analogous situation in ( S, 189) the above
implies that F (1) is of bounded variation and that, in view of (ii) of
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the Teorem,

F(l)èfF'(æ)dæèfg(æ)dæ (all ICS).
! !

This implies that SP =o [cj._(2.4) (2.4a)j, which is contrary to
(2.9). The Theorem is accordingly proved.

A consequence to Theorem (2 . z) [compare with (8, 190)] is

Tascam (2. 15). —— Let N be a normalsequence of nets and F(l) be

a continuous additive function for which

… ——x<(N>5<æ>é<Nfi<w)<+œ

at all points .1'CCD… where D0 is a sum of a denumerable infinity
(at most) of hyperplanes H,- (parallel to either of the aæes); also suppose
F’ (1) is summable. Then

!
F(l)= [F'(.c)da—.

»]

5. {L-LENGTB Of A SET. — Let p…(u) > 0 for u > 0 and

p(u)—+o

monotonicallyas u —> 0. We shall generalize the notion of length of a
set in B…, essentially due to A. S. Besicovitch [cf. (8, 53, 54)].
The p.—length, that we shall introduce, will reduce to that of
Besicovitch for p.(u) = u& (a > o).

Danmnou (5. 1). — Given any set E (in the Eaclidean space R…),
let

E =2 E,

be (1 partition ofE into a sequence 0j sets, possibly denumerable, no two
of which have points in common. Let

/

(3_3) _\e(E)=l_ b_ZP_(3(EÏ)) [ô(E,—)=diameterofE:]

for all partitions (5.2) for which 8(E;)<s. The is.—length of E is
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defined as
(3.4) A(E)=limA‘(E),

!

To justify the définition (5 . 4) wc establish that
(3.5) A%E)éA£'(E) (fore>s'>«»).

In fact, given E (> o), there exists a decomposition E: E. + E, +. . .,
with 8(E,—) < s', such that

2r(ô(E;))év(E)—r—E.
]

Since 3(E,—)< a one alsohas

AE(E)éEF(3(Ei))-
i

Thus
A3(E)éAE'(E)+E;

(3. 5) will ensue on letting E —> 0.
We shall now prove the following [compare with (8, 53)]
Tnzoanm (5.6). —'- A(E) is an outer Carat/wodory measure [in the

sense 0] (S, 43 )]. When p(u) is such that

(i)
k(")‘=[

°u.b°

!] ”<<‘+ä)“)°<u<_ r(u)2n —>1, (as n—>—+—œ),

— then the outer measure A is regular and, in jact, fort each set E there
eæists a se; H, product ofopen sets containing E, so that A(H): A( E).

Suppose EcG. Let G= G.+ G2+. . ., where 8(G,—)< &, be &
partition of G so that
(3.7) . 2p(â(Gi>)éN-<G>+a-

i
On writing E,-= EG,—, one obtains

ô(E,—)éô(Gi)<s, P(ô(Et))éfi(ô(Gtl);
Journ. de Math., tome XXV. -— Fasc. 4, 1946. —/|5
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there is a partition E = E. + E,+. . . on hand for which

-\°(E)—:—i2 xt(ô(lêz))éz P(5(Gr))-

By (3-7)

and, in the limit,
\ê(E)i_ \E(G)+5

_

(a.) _\°(l‘î)._:A°(G) (whenever ECG).

With ; E,
; denoting any sequence of sets, let

l‘:‘=2 Ei/ lô(E1j)<ê_l.
i

be a partition of E,— so that

2 p(ô<E.,->>éxe<Ef)+ riz;
[

then
(3.8) }: p(ô(E;,—))éEAS(E.—)+g.

ii

Then the set E, + E, + . . . has the decomposition

2 E,:E', + E'__,+ 1«:3+. . ., E’,: E1,
(3‘9) ( '

E,: E,— |«:’,, E; = E,,— (E1 + Eî_,),

where no two of the sets El, E'2 , . . . have points in common, while
E}: E,—. Corresponding to the previously given partition of E,— we have
the partition

[_ [ « __ « < .
Pl.—_ 2; Eq» 13Ï-,-— hÊEi/C hu»

i
for which
(a.-«> ô<E:,—>gô<E.—». P(3(EË;))ép(ô(Eu))-

In view of(5.g), (5. 10) the set El+ E2+. . . has & partition

2 E,-=E E;, [8(E[j) < a];
i. 11
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clearly

-v-<2 E,)éZ H(ô<E2,>)=fz P(ô(l‘ïu)).
: !} li

Hence as a consequenceof (5. 8)

._\8<2 E,)éZM(E,)+5! I

and, on letting E —+ 0,
(fig)

-\S<Z‘J‘ii)éz
J\a(El)

for all sequences { E,— }.
Suppose the distance p(E, G) between sets 15 and G is positive.

With e(> o) suitably small, any partition
E+G=“Qb 6(Q£)<£9

will imply that either Q,-cE or Q,—c G. For some Q,(i= 1, 2, . . .),
With 8(Qg><ê, '

(3.11) 2 p(ô(Q,—))é_zfi(E+G)+ê.

On designating the Q,—, cE, by E., E2, and the Qu CG,
by G., G2, . . . we obtain

2 F(5(Qi))=z F(3(E/))+E P(â(Gi))è—\E(E)+ .\ê(G),
i i !

inasmuch as E=El + E2+. . . , G= G.—+— G2+. . . are partitions
With 3(Ej)< &, 3(G,—) < &. By (5. 1 I) and the above

Aë'kE)+AF—(G)éAE(E+G)+5
and, in the limit,
(3.12)

_
Aê(E)+AE(G)éA5(E+G),

Conversely, for some partitions
E=2Eiy G=2Gi (3(Et)» ô(Gt)<€)a

- where a is sufficiently small, one has

Ep(ô(E,-))éM(E)+E, Zy(ô(Gz))éAe(G)-FE
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and

The sequence (E., G., E,, Ga, . . .)=(Q., Q… . . .\ gives a partition
E—+— G=2Q, (ô(Q,—)<e);

hence

): Ma<o,—H=E p(ô(l£.))+z p(ô(Q—))èA°(E + G).

Therefore by virtue of (5. 13)
\ê(|—‘. .._ G).__;_w F.) + -\î(G) %— 23.

We let here E,—+ 0 and, on taking note of (5 . 12), infer that
(d.) -\E(E+G)=—V(E)+AE(G),

whenever ;(E, G) > 0 (& suitably small).
On letting : —> o,‘from (a,), (a,), (aa) it follows that

(3.1.3) .'\(E)_A_-\(G) (f0rECG),
(3.15) \ ( 2 E,)éZ

.\(E,—) (for all sequences E1, E2, . . .),
. !

(3.16) -\(E+G)= \(E)+-\(G) [when p(lî, G)>o].
Hcnce {J.—length .\ is an ouær Carat/wodonymeasure.

We now proceed under the condition (i) of the Theorem. The
proof of the remainder of the Theorem we give following the pattern
indicated in an analogous prof in ( S, 53).

Given any set E, there exists a partition

__ :_ (_n) " ‘(_II) _I_.(3°li) L—2E‘ ’ 001” )<2n,'
!

sothat -

_, « … :‘,—. —
_l_ . _I__(3.:,) 2p(ô(E, ))éA (h)+n_é-\(E)—rn

!

For some open set Gif”, :E:“, one has

(3.18) 5(Œ"’é(l+ ä)ô(EE-"’)
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and

O'" =Z G}"’3E, H =Ù O" : IC,

! n-—l

where H is a product of Open sets. There is a partition of O‘"’ on
hand,

():… =z 02m, 0(n)= G(ln\,
(

0(2n)___ Gg”- 08”), O(‘n)= G(N) _ (0(‘n)+ OL," ), _ _ _,

where ÛÉ"’CGÉ'”- Since for & fixed n one has HcO"", by (3.18),
(3. 1 7) we have a partition

" =Z “°$—’“» 6(HO:—M>4 amy“) < ,{.

Thus as a consequence of the definition of A“(H) and by (3. 18)

A'lf(H) 42 p(ô(HOï—M))42 v(ô<'Gî")))_/_gzF(( +
-'—) ô(EJ'“))—: : ,

Now (i) implies that
.

(3.19) p(( + ,il)6<E$”)>)ék<n>p(ô<Efiffl>)

in view of the inequality (5. 17). Thus b) (5. 1'7’)

A%H>4<a>2H(ô(EÎ-")))ék(n)(A(E)+ ;).
On letting n —» oo , it is inferred that

A(H)éA(E).

The reverse inequality holds by (5. 14). Hence A(H):A(E).
Examples of functions p.(u) for which u—length is regular are

u°‘ (« > ‘o,
[

log(ü")°

An example of a function \y.(‘u) not satisfying (i) is exp. (— â)-
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Æ. Exrausmu or Bas1covncu’s reconnu. — Let (Q) denote a“ binary ” sequence of nets Q,. (k= 1, 2, . . .), défined as follows.
With x=æ., . . ., ac…) denoting points in B…, a net Q,. consists of
closed “ cubes ” whose faces lie in the hyperplanes

.r,=pa*" (t°=1....m;p=o,i1,.…).
Thus (Q) is a normal sequence of nets (a regular sequence of normal
nets).

The Lemma in (S, 192) will be extended in the result.

Lan… (4. 1). — Suppose p(u), used in the definition of u—length A in
accordance with Definition (_ 5 . 1), satisfies the condition

«a.-.… l…: “°b'
[. 11%."L‘2

{u < a é 8 ‘
P(u)

Given (! set E, an integer A‘, and E> o, there eæz'sts cubes Qi, Q2 ,

be longing to the nets Qk (l:à k..) so that

… 2p(ô(Q"))-_é2"‘îm(-\(E)+°£.)ä

<+oo

(ii) foreœry æcE there exists I: =/f(æ}>£, so that all the cubes

o_/ O… contai°gmnx, belong to,_°‘,Q Q , . . . :.

l‘or some partition E = E, + E2 +. . . [o('E;)< 2_*°“‘] one has

(4.3) 2p(ô(E,—))é-\‘-‘“'o“(E)+3é:\(E)+'g.
!

As in (S, 193 ), define an integer ki so that

(4.3') (f,; <6(E.)è;.—,;ç

we have [”,—> A‘, (i: 1, 2, . . .); also we note that each net Qk.— has 2’"
intervah at most containing point: of E,—. Let Q1 , Q”, be the
totality of cubes obtained by picking out all the cubes of the net Qki
containing points of E (j=1, 2, . . .); the sequence {Q‘, Q2, .. }
satisfies (ii).

By (4 3') o(Q")ém length of side of cube of net Q=m2—ki;
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here i depends on n; thus, in view of the above italics,

(4°4) 2 P‘(NQ"))é“"‘2 P—('" T‘“) = 2'” 2 p(a m
EFI—+“!)

n , !:1 1—1

Now by (4.2)
p(2mu)él…p(u) (o<uéê);

'
. .,_ 1 .hence, masmuch as 2““ '_4_ g (:= 1, z, . . .),

I [

P—<2
"! W)é).mF(—g—hîî).

Accordingly, as & consequence of (4. 4) and (4 . 3’),

2 F(ô(Qn))é 2nl).…2f£(aäg)é 2"‘Âm2 P—(NEÛ).

The result (i) will ensue by virtue of (4.3). This complete. the
proof of the Lemma.

DEFINITION (4 . 5 ). — A function F of interval I will be said to
satisfy (pf) [or ( gr)] at a point a: if

. F(I) \ -.— F( I) '

(4.6) hill—mio [Of hm_æ;(â(l))éol

for 1 containinga:. F satisfies (p.) if it satisfies both conditions (4 . 6);
in this case
(4.7) n…

F(FÂ(II)))=O
[asô(I)—>o; 13æ].

We shall now extend Besicovisth’s theorem in (8 193).

 
THEOREM (4.8). — Let F(I) be continuous additive and satisfy (p.)

[cf. (4. 7)] at allpoints. Suppose u(u) satisfies (i) of Theorem (5.6)
and is such that
4. ‘ À… of 4.2 <+ , l' -£-= .( 9). [ ( )] °° alg…u) 0

Let A be the corresponding u—length. Suppose that
… (Q)Ê($)>—°fi in CE,
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where E is the sum of a denumemble infinity of sets of finite u—length,
and
(ii) (Q ) l*‘(æ) èg(.r) (everywhere;g(æ) summable).

Then
(4.lu) l%l.,)èfg(æ)d.r

lo

for all intervals 1...

It will sul‘fice to prove (4. 10) for a cube [0 of a net Qk.
Let V be a minor function of g, in accordance With (S, 190, 191);

that is, V is an absolutely continuous function of an interval such that

(4.11) Âg(.r)d.rèV(lfl>Âg(æ)dw—O:ä;
(4.11) “V<æ)éVo(æ)_—:—g<æ>ç V.<æ)<+œ.
Asin(S)put

_

(4.13) G(I)=F(l)-V(I)+illl.
Now V(æ) = u. b. A, where A is any number such that

_—.——V(I,,)A _l1m ”n‘
 

for a regular sequence { L,} —+ x. Incidentally, here and in the sequel
when we designate I —> a: it is to be understood that 133: and 3(I) —> 0.
On the other hand, (Q)V“(æ) is 1“iîfi% for cubes lof (Q) tending
to a:; that is, (Q)Vis a number A. Thus
(4.14) (Q)V(æ)éŸ(æ),

By(ii)and (4. 12) (Q)P_‘ègèV and
(4.15) (Q)E—VÏèo.
We observe that

F(I)
Îl_è(Q)î(a—)_e [a.e.f.l, c(Q).—+æ],

for .1: in CE, and '

%ll)é(—Q)V(æ)+séî(æ)+e [a.e.f. 1, c(Q),-+w];
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thus by (4. 13)

%?è[<Q>j—e]—[V+sl+z |...-. f. '. c<Q>. —>—TJ

for a: in CE; in view of (4.15)2%—) èE— 23 for intervals [ as

indicated above. Finally, on letting & —> o we obtain
(4.16)

.
(Q)Ê(Œ)èâ_>o (inCE).

\ As a consequence of the last inequality (4. 12)

(4.17) %éB(æ)<+œ (forall |).r)
for all a:; thus
(4.18) “B(—l') ——V<I> _V<l> … z ,

P(Ô(|))
_ 4……) … u(ô<l>)_
 

Since
ill ô"‘(l)

,

…… — ……
in view of the second relation (4. 9) we conclude that the last member
in (4. 18) tends to zero With 3(I). Hense li_m

figé—))) éo and V(I)
satisfies (pr). Inasmuch as F satisfies ( p.), we accordingly conclude
that G (4 . 13) satzÏsfies(pf).

By hypothesis

 
(4-19) E=2En A(Ei)<+œ (t'=1, 2, ...).

l=1

Let R,-,, be the set of points a: such that for all [ of the nets Q,.
(lcèn), containinga:, one has

G(I) ,, 1""”” p<6<1>>>““'“ "‘“= ‘T‘ñîî‘fi 
Consequently CR… is the set of points a: such that for some 1 of Qk
(lcèn), containing ce, we have

G(l)
H(ô(l))

Journ. de Math., tome XXV. — Faso. 4, 1946. 46
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Since (‘- satisfies (pf)   _. G(l) ” _ _J_ _

‘—h—mp(ô(l))è (fonl ,a).
Hence

. G(l) -_, ,Œmè;è‘ if0fl, C(Q): **]-
Thus

o… _ _, .p(ô(l))>_s [a.e.t.l, c(Q), a].

Whence
G(l)@ >,-s [forall !. cQ.(kèn(an s)), —-*—T]-

Here we put s=Eq.—, n(.r, s)=n,—(æ) and infer that a: is a point
of R,—_,.{ …. Accordingly

l{m =2 Rin—

As in an analogous case in (S, 194) B… is a product of open sets.
We have a decompositionof E,- without common points,

F.,—= 13,2 R...=2E… E…= E.<R.—…— R.,…» R.,.=o.
Il

Since the R,—_,, are Borel—measurable and the E,— are A—measurable,
the E,,_,— are A—measurable. Clearly
(4.22) -\(Ei)=2A(Ein)-

Il

Applying Lemma 4. 1 (with 5: 2‘") to E…( C R…), corresponding
to i>o, n>o we find a sequence of cubes {Q‘,{{}(j=l, 2, . . ) of
the nets Q,,(kèn) so that

(a) 29(MQEQ))éaMM[ \(E…> + z—n];

(B) for each a: of E,—,, there exists I; : k(œ)èn so that each I.CQ,,,
containing a: belongs to the sequence { ‘!°’ }

-tn?
(y) each ‘,{,’ contains points of E,—,, (and hence of R…) and conse—
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quently {by (4. 20)] satisfies '

G<Q$£: _ .
P(ô(Q$£:)) > ”"

As in (S) let I., he said to have properly (A) if 10 is a finite sum of
non overlapping intervals ] , where 1 is either a cube Qf{} or G(l)>o.
If B is a figure consisting of a finite sum of non overlapping ‘,{.’, then
by (4.23)

(4.23)

G(R)è—E2qm(ô(Q$£2))-
* (ni

On using (4.20), summing first with respect to i, taking account
of (a), then summing with respect to n, in consequenceof (4. 22) we
obtain

G(R) è—.- zrni,,,g.
Hence
(4.24) G(I)è— 2"'Â…'£_ [for all 1 with property (A) ];

in particular this will hold for [ : î{;.
Suppose l() (a cube of the net Q,“) does not have the property (A).

Then G(Io)‘<— 2'”X…E. Accordingly for a sequence { I,,} of cubes
belonging to various nets, we have

1.31.31.:…, G(l,,)<—ami…g.

Let x., be the common point of the I,,. If x., C E, then by (4. 19) and
the decomposition preceding (4.22) x, belongs to some E…: thus
by (B) amongst the I,, there are some î{j; in view of (4.24), where
we replace Iby one of these Qî{:, a contradiction arises. If 330 C CE,
then by—(4. 1'6) Exp—%? -l—_ a > 0 (for 1. c(Q), —+ x“); furthermore,

lim Ê.Œ’È _>_5. Hence (Î(IIP‘) _>_% (a. e. f. p.) and G(I,,)> 0 (allp

P èp.,); this again presents a contradiction. Hence I0 has the
property (A); by virtue of(4.24) (with [: I.,) and (4. 13), (4. 1 :)
an inequality is obtained for F(I.,) which, on letting E —>o, yields
(4. 10). The Theorem is accordinglyproved.

A corollary to Theorem & . 8 is as follows.

 _ |Ip|
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Tnnoaeu & . 25. — Let a continuousadditive F(I) satisfy condition (p.)
(4 . 7 ), while Nu) satisfies (i) of Theorem 5. 6 and (4.9). Let

(Mô> ——°°<(Q)Eé(Q)F<+Œ [1'n(E)J,

where E = R. + li,+. . ., with A(E_,—)<+œ (j= [, 2, .) Then

4. - F | = F' - d.:-< … (> [(Q) …

for a” intewals 1 in any portion of R… in which (Q)F'(æ) eatists
(almost everywhere)and is summable.

Under conditions of this Theorem F(I) will be absolutely conti-
nuous in the indicated portion of H…; accordingly in (4.27) (Q)F'
may be replaced by F'.

5. CONDITIONS son ANALY‘l‘IClTY. — In this section we [et
(5.1) f(:):u+iv (:=x+i)')
be a function continuous in the complex variable 3 for 5 in a domain G.

Correspondingly there is on hand a function of an interval (rectangle)

(5.2) J(I)= f(:)d:=J,(I)—+—ih(1),
(|)

continuous and additive, as a function of 1. As is well known, ](z)is
analytic in G if F(I) = 0 for all 1 in G.

‘
We extend & theorem of J. Wolff (S, 196) as follows.

Tar—zona 5.3. — f(:_) is analytic in Gr, :]
ff(s)ds

…

for almost all 30 in G and if
(u) lun

Îl—ll—Æfd:

except at most at points zo of a set E consisting of a denumerable infi—
nity of rectilznear segmentsparallel to' the aæes.

… 1î_rgl—'l—l
:O (1350)

  

<+oo (ID:—o),
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.In consequenceof (ii)  (5.4) —œ<h£(z)=l_îæ——élun :J;(æ)<+œ

(for 133) in G——E. It is known [cf. (S, 141)] that, if F is an
additive function of an interval, on has

(5,5) F’=(F,= FÇ=)F;

almost everywhere in any set in which the derivates F,, É are finite.
Since m(E)=o, (5. 4) implies that the strong derÈates of J. are
finite almost everywhere in G. Hence by (5. 5)J'=J', almost
everywhere1n G and
(5 6)

lim£-î—Ê%=JÇ
(l—+s)

for almost all .: in G. In view of (i
)'——(—'-'-)—|

tends to zero, for some

sequence I,, I, , . . ., tending to., almost everywhere… G; thus
Jl(ln) __ __(5.7) lim |…

_ _. .

for In and 5 as stated above. ' Hence

(5.8)
_ J'' = o (almost everywhere in G).

Let °(N) denote a normal sequence of nets as in section 2. The
numbers (N).h(z), (N).Ï(z) are derivates formed with the aid of
spécial sequences of intervals, tending to :, while the strong derivates
are formed with the aid of arbitrary sequences of intervals tending
to 2; hence

L,é(N)fié(N)JÎéJ—w
.

Thus by virtue of (5 . 4)
(5.89 —Œ<(N)—Lé(N)JÏ<+ oo

in G-—É. Conséquently_ (i) of Theomm 2.15 holds for J . (with
D.,: E). In view of (5.8) the ordinary derivative J', is summable
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in (i. Thus Theorem 2. 15 applies and one obtains

J‘ 1 :: J'l : d d’: .< ) fl ( > x ) o

Similarly it is shown that J,(l) =o . Whence J(l)= 0 for all 1

in G;_/'(:) is analytic. Our theorem is proved.
Let (N) be a binary (normal) sequence of nets [Def. in (S, 191)],

consisting of squares. We shall prove the following modification of
Theorem 5. 3

Taiwan! 5. 3'. — j(s) is analytic in G, if (i), (ii) of Theorem 5.3
hold, as stated, where I denotcs squares of the above (N).

ln fact, bi (ii) of Theorem 5.3’
—œ<4N)J,_/_(N)Jv<+œ (inG—E;v=t,2).

Now in (8; 192) it has been noted that, with (N) denoting a_

binary sequence, ( N)F' exists almost everywhere where

(N)I_“>—œ, or (N)Ë<+œ.
Thus the above implies that

(N)J., (v : 1,2) exist almost everywhere in G.

We note that (i) of Theorem 5 . 3’ implies that for almost all zo in G
there exists a sequence { L,} of squares of (N), such that I,,jz…
o‘(l,.) —> o, so that '

J.,(I,,)=O ("J=I, 2).lim !
ilnl

Clearly ( N)J'(.… )—_ o almost everywherem G. By Theorem 2.15,
applied with the binary sequence ( N), one has

J.,(l)=fl(N)Jf,(s)dæ d)'=0, J(l)=
.. 1

for all intervals [ in G. The conclusion of the Theorem ensues.
In the above Theorem one may replace (ii) by the requirementthat

.— [ll!“ … <+00
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for zo in G— E, where [ denotes any square containing :..,(_ ——> s.,).

Before we apply section 4 to functions of a complex variable we
shall investigate the connection between property (p.) ofJ., J, and
the “ modulus of continuity ” of_/'(:).

If _f(_s) is not uniformly continuous in G, we replace (; by any
domain (open), whose closure lies in G; in such a domain[(s) will
be uniformly continuous and, for :, s’ in it, one will have
(5-9) lf(Z')—f(5)lén(!='—sx ).

where n(u) (n > 0 for a > 0; n —> o monotonically with a) is“ modulus of continuity ” of [. We shall considerthecase whenf( : )

is uniformly continuous in G; thus, in G we shall hace (5 . g).
Consider an interval I, whose left lower vertex is } =;Ï.+ {;},

and whose horizontal and vertical sides are of length a and b, respec—
tively. By (5 . 2) one has

IJ(I)l.—é
 

31+a

f… [f(—r + is.) —f<-r + t(:}=+ … du
3. 

g,+b

+lf [f(ÿx+iy) —f(ÿ,+a+iy)]dy
33:32  

Hence in view of(5.9)
lJ(1)léan(b) + bn(a> é"zô(l)n(ô(l))

and ‘

lJ(l)l 23(1)n(6(1)) .
[J—(ô(l)) é —— =2œ(o(l)).e(_ô(l))

On taking account of Definition 4. 5 we thus infer the following.

LEMMA 5. 10. —— J,(I), J2(I) [cf(5.2) satisfy the condition (p), tj
the modulus 0f continuity n(u) off is of the form

 
<5.n> n<u)=w<u>ä”—Â

where co(1t) tends to zero with u suflîcientlyfast, so thatn(u) —> 0 with u.

The following is our extension of Besicovitch’s theorem (S, 197).

THEOREM 5.12. — Let p., used in the definition of p.—length A,
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satisfy (i) of Theorem 5.6, (4.2), (4.9) (with m=2). Suppose
that the modulus of continuùy ?; [cf. (5.9)] of f(z) is of the form
(5. H). T/wn f(x) is analytic in G, iff‘”(z) exists almost every—

where in G and if  (5.13) iTnî
f(°+")—f“) <+œ

h—>o "
in G — E, where

(5.14) 15:2E,, -\(lâ,—)<+œ (j=1, 2, ...).
j:l

lf :, is a point at which f‘“(:o)exists, then as indicated in (5, 196),
one has
(5. là) L——a ——> o (any square I—> :o).

lJa(l)î' lJz(l)l ,,

___—ill
, __|“ éÿ(*0)

for all sufficiently small squares [ containing so. Accordingly
(5-16) —w<(Q)fi(So)é(Q)J—i(îo)<+œ
in G — E. Now (for s., in G — E)

J,…
(Q)È(;°)=lËÏÏ—ÎÎ (for squareslof(Q),—>so)

and

4,‘—%’ï—)—><Q>_J_g<s.>

for some sequence of squares {L,}, of (Q), ——> 50; hence by (5.15)
(Q).l_._(:o) = 0 at every point of G — E at which f… exists; sincef‘“
exists almost everywhere in G and m(E) = o, we have (Q)J, (zo): o
almost everywhere in G. A similar result Will hold for (Ô)J,(zo).
Hence

(Q)J’, : o (almost everywhere in G).

In view of the assumption regarding the modulus of continuity of
f(x) it follows by Lemma 5. 10 that Jl(l) satisfies the condition (p…).
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By (5.16)‘, (5.17) from Theorem 4.25 we accordingly infer that

J,(1)=fl'(Q)JQ(=)æ-dy=o]

for alljntervals I in G. Similarly it is shown that J,( !) = 0. Time
, J(I) vanishes on all I in G. The theorem is proved.

We shall give some examples of functions pt, ?} that may be used in
the Theorem. Let: 11. be termed admissible if psatisfies the conditions
of the Theorem. Furthermorc, in the remainder of this section
limits Will be understood to be atlained monolonically.

(5 . 18). The/auction p.(u)= u).(u) is admissible, ij"/.(ü)tfi___ÿl.0 >n‘)
is monotone non decreasing, as 11 —-» 0, and is such that p.(u) —+ u: in
this case no condition is required on the modulus of continuity ‘t,(u):
thus, when ).( u) = 1 , Theorem 5 . 1 2 reduces to Besicoväc/e’s theorem
(S, 197)-

In fact
(aq) 41» (for Vèl,lt>0). 
Hence Ic(n) of (i) of the Theorem 5. 6 satislies

Iék(n)él+la limk(n)=t;Il n->‘ï

i(°‘i)> With V = 4; Will imply (4.2). Mor‘eover,

u2 u u_ : .—-— 4 —°M“) A(“)—Ac’

whence(4. 9) holds.” ' Accordingly p. is admissible. By (5. 1 1 )
u

Md)
‘fz(u) n(u)_).(u)éÎ’ n(u)= œ(u)=

n(u) —> 0 in consequence of thdcontinuity of f(s); hence w(u) -+ 0
With u; th‘us no condition on 71 is needed.

(5. 19). The function p.(u)= Ï—u is admissibleprovided0 )

(5.19 a) o(u)-—>o, oLu)—>O (with a);

Journ. de Math., tome XXV. —— Faso. 4, 1946. — 47
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rorrespondz‘ngly in the Theorem one may use any rnadulus a] the form
u

o(u)' (5.19b) n(u)=w(u)
where w(u) < 0) —> with u.

To establish the above we first not that

:
,p.(vu)_ ! o(u) ‘! ;(t,) ___—:““) __v

(———)(yü)éa
(for v_t,u>n).

llence, on letting » =1+ n", one obtains

ték(n)é(1+i>i, limk(1z)=1:” n-).œ

(a:2 ) also implies (4. 2 ). Moreover,
u2 _.fi=o(u)+o (vuthu)

'

b_v hypothesis, which implies(4.g\. Thus puis admissible. Finally,
(5.19 113 is inferred from (5. 1 1 \.

The set E, involved in the Theorem, contains by hypothesis all_ (f(:+h) —f(s))
the points at which lim (:

may be termed “ singular ”. In view of the condition (5. 14), satis—
fied by E, one may assert that in a certain sense the following holds.
The faster p(u)—+o (subject to the conditions of Theorem) the“ greater ” one may allow the singular set to be. Accordingly, the ‘

case described in (5. 18) presents nothing essentially different from
the situation involved in Besicovitch’s theorem (S, 197). By the
same token the case presented in (5.19) is essentially distinct from
that in the theorem in (8, 197).

 
|
is infinite; in this sense E

6. REPRESENTATIONS or ruucnous or A compuax VARIABLE. — We write

(6.1) 5=5.+i5.. J(l)= f<s>ds=J.+iJ.
J .…

and recall the definition of upper and lower derivates and derivatives

(N)—13, (N>Jî, (N>J3 (Q)J_w (Q)JÎ, (Q….
.h, JÎ, J(, (v=1,2),
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with respect to a normal sequence ofnets ( N ), with respect to a binary
sequence of nets (Q) and ordinary, respectively.

We shall make use of the following theorem of N . Théodoresco( ' ).
If ç(ÿ) is measurable and |:p(ÿ)[ is bounded almost everywhere in

a domain G then, on letting
d‘ , l‘ ,(… g(.)=_È. fi%)__l_ä_6

one obtains
(6°3) fg(s)d:=flç(j)rlÿ,dÿ,(“ |

for intervals 1 in G (we stated the the0rem in a slightly different
form). Here and in the sequel an eæpression like “ |F( ;] )] is boum/cri
almost everywhere in G ” is to signijy that

lF(ÿ)léB (MG—Go),—
where mGo= 0.

We shall now prove.

THEOREM 6. 4 . — Suppose(i)/(::) is continuous in G nm!

(6.5) lim
T—;—,l

f(;)d: <-+— ac (interruls !:.—:)
…  

for all :: in G, eæcept perhaps on a set D0 consistingof a denumerable
infinity of rectilinear segments parallel to the aæes :

_[url/eermore,
assume (ii) that lJ’(ÿ)l is bounded almost everywhere in G. Thenf(E) will have a representation

'J' (I‘ ,d .(6.6) f(s)=—Ê fl_(f{_>__£_l+uW
[a(s) analytic iit G].

Form the function
J’ d , “.(6-7) Q(5)=f(5)+ âgfl—(Ê)_5de"

G
..

.J'(ÿ) is measurable in any case; thus in view of (ii) and by 
(‘) N. Tnûooonesco, La dérivée aréolaire et ses applications à la physique

mathématique (Thèse, Paris, 1931).
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Théodoresco’stheorem

(6.8) [“q(_‘)”'=ff<)d"—f;[_ _Lii_flcJl(gÿ)Î—ghd52]d”

=J 1) _ J’ 5 dg.d ,:p 1.() j|Î ( > :! < )

If it is shown that F(l)=o for all intervals [ in G, then q(z) is
analytic and the theorem is proved. Now (6. 5) implies that

16.9) —œ<(N){Y£(N)jÇ<+œ

in G — D,; this fact has been establishedsubsequentto Theorem 5. 3

[text from (5.4) to (5.8')]. Inequalities (6 g), together With the
condilion (ii) which implies summability of J’ on every I in G, enable
application of Theorem 2. 15; accordingly

1,(1)=j]'1;(3)d5,d3, (v=1,2), J(l)=flJ’(ÿ)dÿ,dÿ,
| I

and F(l): o.
Another representation is as follows. 'l‘11tzon 1-‘..\1 6. 10. — Let …u) be and “ admissible ” function in the

sense of the preceding sections. Supposef(3) satisfies

(l) Œf(s+h)_f(z) <+œ .
…>o h

for 3 in G except perhaps on a set E = E. + E2 +. . . , where the E,— are
each offinite p—length; assume the modulus ofcontinuity73(u) off(z)
af the form
(ii) n(u)=w(u)fi%u—) [n(u), œ(u)—>owithu).

Then, provided (iii)
|
(Q)J’(g)] is bounded almost everywhere in G, one

has a representation
(6.11) f(s)=—— +a(s);_Ïfl‘(Q)J'(J)däadÿe

[a(z) analytic in G].
We form again q(z) as in (6.7), where J' is replaced by (Q)J’.
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By (6. 2), (6.3) and (iii) we obtain

'6.m) (z)dz=F(l)æJ(l)—— (Q)J'(;Ï)dfl.dÿ,.*
f…" fl

It will suffice to prove that F(I) = 0 for all intervals ] in G.
Suhsequent to Theorem 5.12 it has been established that (5. 13)

irñplies (5. 16). Thus in view of(i),
(°!) —œ<(Q)—Læé(Q)Âl—v<+œ (inG—El-

As a consequence of (ii) and Lemma 5. 10

(5) J.,(I) satisfies condition (pt) (Def. 4.5).

By virtue of (iii)
(Y) . (Q)JÇ is summable on every lin G.

By (a), (B), (y) from Theorem 4.25 we infer

J,, 1 : Jf, d ,d 2 (v: , ), .l l : J' d;,dfl,.<>Æ<Q><ÿ>äÿ. … ()fl|Q(J)I
Hence F(I) (6. 12) vanishes on all I in G.

In the representations (6. 1 1) (Q)J’(ÿ) may be replaced by J’(_ÿ).
Theorems 6. 4, 6. 10 may be extended somewhat if in place of

Théodoresco’sTheorem (6. 3), we make use of Moisil’s (‘) extension
of the latter result. *

' The representation in Theorems6 . 4 , 6. 10 are unique in the sence that
iff(z) is representable in the form

(6.13) f(z);-È GW+b(z)
[b(z) analytic], where icpÿ)| is bounded almost everywhere in G,
one necessarily has <p(ÿ): J’(3) (in case of Theorem 6. 4) and
:p(?): (Q)J’(?) (in case of theorem 6. 10) almost everywhere. 

(1) G. G. MOISIL, Sur un système d‘équations fonctionnelles (C. R. Acad.
Sc., t. 192, 1931, pp. 1344-1346).
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It will suffice to establish this for the case ofTheorem 6. 4. Subtract
(6.13) from (6. 6); one obtains

___'__J]‘ (;Ï)dÿ. dÿ*=c(z) |r(s)analytic]
-17:c “ ; —:

illld fian__;
3_,(_, (+…J cp).

1| “'—:
Since l.l'— ?! is bounded almost everywhere, from (6.2), (6.3)it is

inferred that

fl "l'(3) dfl1 dÎlgî£ 11

|

for all [ in (i.Tl1us =p(fl): 0 and <p...— J’ almost everyWhere.
Thus under conditions of Theoreuis 6. 4 or 6.10 (whichever15 the

case) the equation

«e.m —'—JÎMË +=f< )=u<=>
a1: : ;}

[a(s) analytic, n0t assigned beforehand: ç(;‘p) the unknown] has a
unique inversion, bounded almost everywhere,
(6-l'1") ?(3)=WÏH |°" ?(ZÏ)=—“(Q)J'(ÿ')l-

6'. Rspassemnmn or FUNCTIONS on COMPLEX mamans (CONT1NUED).—In
this section we shall obtain a representationoff(3)= u(æ,y)+ iv(æ, y)
without recourse to Théodoresco’stheorem. In this the result to be
establishedwill be similar to a number of representations the author
had obtained in a previous work (' ), in the sequel referred to as (T).

We assumef(3) continuous in G, such that

(6‘.1) lim—‘ f(z )ds <+œ (intervalsl:s,)
(! ‘

 

for all :, m G, eæœpt on adenumembæ mjîm‘ty (at most) of segmnts
parallel to the axes, moœoær, the partml dentaùœs
(62) “x: "ly: ”:::: ")“ 

(‘) W. J. Tunzwsn, Problems of represenmtiw and uniqueness j0r func-
tions of a complex variable (Acta Mathemati0a, t. 78, pp. 97—192.)
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are assumed to eæz‘st almost everywhere in (E, say in (% —-— G… with
mG,: o.

Differentiability of a, v, as postulated above, implies the following.
Let F,, be the set of points such that

lâ(u(æ+ lt, J') — u(.r, )‘))l» :;t (ut.r,y + It) —-— n(.r, y))l:(6.3)
I . _

.
*

,ñ(v(æ+ ": Y) — V(J't y))l »

|Ïz
(t°(.r, )' + h) -— t'(J', y)).é'h

whenever ”lié :—1
(the only points, considered, are of course in G).

Clearly F , , F,, . . . are closed sets and
F.CF,C.…; G:liml“…DG-—U…

We write
(6’.4) p(n)=m(G—F,,;
and note that
(6'.5) limp(n)=o.

Il

We establish that if …) tends to zero sufficiently fast with :_, then
./(3) has a “ Cauchy double integral ” representation.

THEOREM 6’ .6. — Sappose [(s) is a function as described in connec—
tion with (6'.1), (6’.2). If a sequence o/‘t‘ntegers 0 (j,< j,<. .

may be found so that the two sert‘ex

(6'.7) P1=Zjêœfilarg=2logv2sp(s)
v ‘>l,,

converge, then
(6'Ï8) f(z)=__Lfl‘Jl—Jldÿtdÿt+ a(5).

27”

with a(z) analytz‘c in G.

NOTE. — (6’ . 7) can be satzkfied if
(6'-9) p(s)…écfi (« >4).

We shall use the following rèsult due to D. Membofl‘ (‘). LE!

(') D. Mammoth. LEs conditions de monogénéc‘té, Paris, 1936, See p. 10.
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w(æ, y) be real valued and such that

‘ IW(.r,, J'i)“" “’(—Tn J'!)
| énlæ2— œ, ],

' l”'(“'"3'=)““’<“‘n.ïï)léülfl-‘fi|(6.10)

whenever (z,, y,). (x,, y.) are points in a square Q, while (xi, y,)
is in FQ, where F is closed. If '

[=((né.T:/b|; ”géj'ébg)
is the least interval containing FQ, one has

”:[ u‘(æ, h,) —w(.r, a,)] (LT—fl w_,.(.r,y)d.rdy. QF

|

l\ [

!fï
é5nlQ—FQ l:

 

 
w(b,, y)—w(a,,y)] dy— [[ W_v(…v, y) dx dy é5nlQ—FQI-

. QF .

u,

n.

(S'-H)\
?

As remarked by Menchofl‘, (6’. 10) implies that w_,,, W,. exist almost
everywhere in QF.

As before, -we write

J(l)=ff(s)ds=J.(l)+iJ«_.(I).
.|.

Let Q be & square, the length of Whose side ! does not exceed
-Ï—z

, such
that F,,Q;£o. It is then observed that if (æ,y) is in FnQ and
(x., _v), (.r, y._.) are any points of Q we have '

\

leva—fr;, !)'a—ylé
àl—

Thus, by (6'.3) the inequalities (6’. 10) Will hol‘d for u, v, F=F,,.
Let [' , as designated previously be the least interval containing F,,Q
By (6'1 1 ) we obtain

Jt(l')=—j]‘ (“;—+ “y) dŒd)’) — Eu.2— îu.1i lîu,2 |; lEmîl é 5"
| Q_ QFR l

QF-

Now, in view of(6' .3)
('6'. 12) l".rlæ lu_\‘ la l".rl7 |vflén (in Fu)-

_Thus EJ.(I')lé2HIQFnI+IOMQ“QFnlélonlQ %—
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Similariy |J,(I’)| does not exceed ton|Q |. Hence
(5'-13) l-HWIéSOMQI-
for any square.Q (in G) the length of whose side ts é-ä while QF…# 0
and I’ zîs the least interval : QF…

As a consequence of (6’. 1) the lower and upper strong derivates
of J , (I), J,(I) are finite almost everywhere in G. Hence the strong
and ordinaryderivatives of J(I) exist and are equal,
.6'.14) J.: (J)=J'(3),
for 5 in G— H,: 0, where mH,= o. Let H,. be the set of points
of F,, which are not points of density of F,,; necessarily mH,,=o;
moreover,
(S’. 15)  —> 1 (} in F,. — H,.)

as interval I, containing5, tends to ;. We observe that

(6'.16) lim F,,=Z (F,,- F,,-,), F.,: o,

Since m (G — lim F,,) = 0 and
œ

mH0=O, m 2
H,,::n,

,

by virtue of (6’. 14), (6’. 15) it is inferred that

 
(6'.I7) G=E+G°, mG°=n,

where E consists of points ;, such that
I° 5C1imF,, [cf. (6.'.16)],
2° . —J;(5)=J’(g),

|IF,.| .
30 ”' —>1 (as 1nterval I—>ÿ),

|

where n is any integer for which ; belongs to F,. [as a consequence
of ( 1°)]. Corresponding to (6’. 16) we have

(6'.18) E=Z(F,,-F,…)E,
n=1

Journ. de Math., tome XXV. — Fasc. 4, 1946. 48
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Lau… 6'.19. -— For; in (F,.-— F,…)E one has

(an.…) IJÇ(J)F=IJ'(J)é9M._
ln fact, by (2°) the limit

J 1
(«> Jî-(J)=J'(fl)=liyn

—IÂÇ"'—l

exists (and is unique) for any sequence of intervals I.,, containing;}
and tending to ;. Let Q., be a square with 34 for center and having
the length of its sides equal to ; With ; in (F,,-—— ,…)E, ;} is

apointofF… Hence Q.F,,;£o(v=r,2,…). By°(6.13)
(@) J(‘#).éfl°ülQvl (Vèü),

where I:, is the least interval containing Qv F..; clearly I'v contains 5
and the diameter of I:, tends to zero with : Thus by (oc)

… limJ…')'
v …!
 ==JL(ZÎ)=J'(QÎ)-

Now, by (8) and since |
I.',

| _>_ |
Q.,R. ’,

'J(l')'
| Q ;' " _/2f n‘ V 42012 " v>n

L" |
__ )

!

I:, , _ ! Qu) ];‘n !

( _; )?   
In view of (3°) (with 13 Q., and v —+ so) the last member above tends
to 20 n when v —.+ oo. Thus, as_a consequence of (y) ‘

IJÂ(J)IËIJ'(J)lÉ_20n,
which establishes the Lemma.

Convergence of the series

r3=2 ‘P(s)i

which is implied by (6' . 7), signifies that J' (}) :: summable over G.
In fact, by Lemma (6'.19), (6'. 18) and (6’. 17) it is inferred that

<6'm) ÆU'(J)M5:ü-æ“—*flfl’(ä)ldÿadÿe"=‘—2flïJ'(ÿ>ldædæ.E , n=1. E"
where

— J=âfi+iÿe, En=<Fn—Fn'—1>Er
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and

jlJ'(3)dædÿ=—éaoZME…
U n |

moreover, E,, is a subset of G —— F,… so that
(6'.‘A2) |E,:|ép(u—l)ép(n);

' thus ‘
fl!J’(J>dæ dÿaé201‘a—

G

As a consequence of (6'. 1) and of the established summability
(ovenG) of J ’ (ÿ ) an applicationof Theorem 2. 15 will yield

6'.3 JI: J'g,d«,d—._,( 2 >. ( ) fll ( ) J J

for all intervals 1 in G. T/ze additzbe_/unction

(6'.24) * J(e)=jÎJ'(ÿ)dÿ,dä

of measurable sets e (in G) is obw'ously absolutely continuous; father—
m0re, this function coz‘nczdes with J(I) on intervals; J (1) is absolutely
continuous as a function of intervals.

With e den0ting a measurableset in G, in place of (6' . 2 1) we have

j]ïJ'<5>ldfh dat: =ijl—ï'(ÿï):dflldÿïe=2[ .J’ct>1dæ d;t.…

Thus, in view of (6’ .. zo),

flIJ’(5)ldÿadÿséz20nleEnlo

Letj denote a positive, as yet undefined, integer. On making use of
the inequalities

ieEnléiei (né./‘), ieEnléiEniéP(n) (”>.Ï)

[cf. (6’ . 22)] it is accordingly inferred that

'l>i
jlJ'(ÿ)ldÿ,dægÉQon|el+2 2ohp(h).

" iz-:1
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Thus by virtue of (6' . 24)
(6225) |J(e)léc‘j*lel+202n9(n)=W(13lei),

n \—i

where c is positive and independent ofj, e.
Let ! be a segment in G, parallel to one of the axes—say, the axis of

reals, its end points being p+in,h+in (p>h). Let' I., be the

interval containing ! and having sides in the lines y=n_%—°,

«I‘:—p—C—« J‘=h+'_—}‘ (suitable r.,>o). It has been established

in (T)that
« "" " "” 4'1a '1_1(3)=f,1=—51=f,Î—=—Jr—c°“ ”““" ”“)

for_…\…_. 3. By (6'.25)
'<6'aô) :J.(e)léwu,lel) :J«(e)!éw(j,lel).

 
Designating by

' V+, v—, V: v—f—_ v—

the upper, lower and total variations, we have
Vñl,(e): u. b. J, (e,), V—J,(e): ]. b. J,(e,) (for eoCe).

In view of (6’.26)
0_/=V*J.(e)« -—V“Ja(e)éfl‘(j, le!), VJa(e)_é2W(j« ICI)-

There are similar inequalities for J2(e). We define the totàlparz‘ation
of.) =J.+ iJ, as

V*J(e): VJ,(e) + VJ2(C) ;

by the preceding
(6-27) V*J(e)éûfl’(j, ICI)-

We want to secure

fl‘{'___(ÿ)dÿidÿe( a) m[flG .dsi —fl[(!)î—ÎS] (g) 5 3

for all intervals 1 in G. Thus, together With our other conside—
rations, would enable us to dispense With Theodoresco’s theorem.
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Inasmuch as by (6' . 24)
.

I o d.] _… : T-(—eéû (;I variable point of integration),
G 3 "' z (: J _ ;

it is observed that (6' . 28) is secured provided the integral

flv<ÿ>dV'J(e.)
G

exists. It' is sufficient to prove existence of

T=flï(g)dv'J(ej) (suitable ….
l-,o

Now in view of the inequality preceding (6' . 26)

T: ...édzlogqv'ulq—|…).
'IÈVo

[,,—I,, H 'IÈ'Vo

Utilizing (6’. 27), With e à L,— I.,“ andj=j.,, we obtain

Tél. c'2 logq w(j,,, |1.,_ l,… 1).

“lève

With the aid of the definition of w(j, |ei) in (6' . 25) and since
!lIq'— Iq—H léco 'q_g’

it is inferred that
.. 100r q./ 2 b _/Té[;cocc Zjq q2 + 80e 2 logq2 n p(n).

'IèVo '/ Ève V>],, ‘

 
Here the integers j. <j.< . . . are at our disposal. If the j2 can be
chosen so that the séries involved above converge, then T exists
and (6’.28) Will hold. Accordingly we observe that the condition
(6’ .7) implies that a relation of the type involved in (6.2), (6.3)
hold in the present case; thus .

(6h29) Â)
—

—-‘—flü…êdz=flîflædædæ2 ni 5 —— 5

for all intervals [ … G.
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Form the function J' )d*,dg‘L_.q(s>=f<s>+
;—'—-…J

“‘ 3 -
——5

By (6'.29)
…

fq(z)d:=J(s)—j J’(J)d;Ldÿ…
… |

ln view of (6’ . 34) on accordinglÿ obtains

q(:)d;=0.
…

Hence qg:-) is analytic and the conclusion of the Theorem ensues.

7. INTEGRAL commons os THB msns or Tnaonen 6.4. ——' We introduce

Denmnon':. — A contmuous funetzon /( ) «»le be sazd to be of
classe R (] C R) 1j

(7.|a) Îm,;7lff(z)dsl<+œ (j‘or1350; 301.”G'“'D0)1
: . (|)

where D0 is sum of a denumemble infinith (at most) of segments
parallel 10 the aæes, and :]
(7.1h) lJ’(})éB (ji/1G—Go;rnGo—_—o),
where

J(I)= fds.
)(1

We shall study integral equations

fl‘£‘(ë
3WŒ)”J#Üz

. « ‘ÿ_;
where a(s )z's a generze desc0natwn for a functzon analytcc and not
asszgned beforehand, here o(ÿ) is the unknow.n Put

k(:’ (l)_ A:(:’ "')
J__-;

and assume k(;, :)= 1. Time the equation is
(1 ,d(7 2) jf‘P—(Ël—J—J—4rflK<s J)@(3)dÿhd}+f< )=a<z );

+f(:)=u(s) (fCR),

K(:-, ÿ)—... 
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that is,

,_ ———‘P(5àdïü'+f”(:)=a(z),
(7.2’) G '

f75)=f(s)+e(s% gts)=[K(s, ;1)ç<;1>d5.ds,,

In the sequel K(s, }) will be subject to suitable conditions.
Asso‘ciated with (7 . 2) is the integral equation

(7.3) 2nicp(z)—fl0'(s, J)ç(ÿ)dÿ.dÿ,=J'(s),
(;

where <D'(z, ÿ) is the ordinary derivative (supposed to exist) of the
interval function
(7.3a)_ ®(I,ÿ)= K(:,j)ds;

(|)

we shall write
(D'(:, J)=D:‘D(l, S‘);

in this section Dz ( or D5) will designate ordinary denvatz'onof interval
functions.

LEMMA 7.4. -— Every solution ;(ÿ) of ( 7.2 ), bounded almost
everywhere in G, will be a solution of the regular Fredholm integral
équation (7.3), and conversely, provided f(s), K(s, ;) satisfy the
conditions
(7.5) f(z):R (Definition(7.n);
(7.6) g<s)=flK<a s><æ<s>dæ615ch

G

for all cp almost everywhere bounded in G

(7. ) [ K(r,J «

d“.d;‘;._.] d:=fl0 1, , d- .d« .7 £ jÎ_ >…) J
_ .

( s>.«»<s> } }
[(I) from (7 . 3 a)] for all <p almost everywhere bounded in G;
(7.8) [ww 3-) |2dædÿ.

bounded almost everywhere in G;
(7.9)

D.flG®<L sw<s)ds.dsz=flæ'<s, sw<s)d5.dsz
G
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for all <p almost everywherebonded in G.
The condition (7 .8) may be replaced by

(7.8'> !] ifl®'(a;l)z2(d—L'd)')(dmdg}e)
G G

exists. ln vie“ of (7.1 I)) the condition (7. 8) implies that every
(regular) solution of (7. 3)15 bounded almost e\erywherem G.

Supp0se ;: :s a bounded solutzon of(7. 2). - By (7.5), (7.6)jof
(7. 2 ’) belongs to B. Consider (7. z)m the form (7.2’) and apply
themversion ((i. 14), (6. 14 a) (\\here f1s replaced by / ); thus        

]

where
Ju [“;—,j(

)d:=J(l)+Jo(l), Jo(l)=jflg(s)dz.

ln view of(7 . 7), (7 . 3 a) une may write <p in the form

2n59(=)=J'(5)+03fl0(1,J>?(J)dÿidÿa;
G

hence (7.9) will yield
_(7.…) aniç<s>=J’<s>+fl®’(z—. J>@<5>d3.d52;

G

ll1at is, ; will be a solution of the Fredholm equation (7 . 3).
Conversely, suppose @ is a boundedsolutzonof (7 . 10). — By (7 . 9)

it is inferred that <p will satisfy the relation preceding (7 . 10), which
as a consequenceof (7 . 7) yields

aniç(s>=J'(s>+D;flfllä<n5)<p<:}>dædæ]dr
=J'(S )+D-— g(?)dT=J’()+J'o(5)

(1)

lnlegrating over [ and utilizing (7.5), (7.6), With the aid of
Tbeorem 2. 15 we obtain

(7.11) 2n‘iflo(s)dædy=flJ’(z)dædy+flJ3(5)dædy| 1 1

=J<I)+J(I.)=f(f+g>dz=fî<z>dz-(') ' (‘)
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Since <p is bounded, by (6. 3) it is inferred that

. .. , d d
2nzfl?(:)dxdj’=anifl[—fñ w—à—-_£Ë-£—’]d:.(| G

Thus from (7 . 1 1) il follows that

f {flq><J)dæd5. +Î…] dz=0
… C. J_"

for all-I in G; hence [. . .], above, is analytic; accordingly :; is
a solution of (7.2’), that is of (7.2). The proof of the Lemma is
complete.

Tascam 7 . 12. — The integralequations (7 . z), (7 . 3 ) are equivalent
in the sense that a solution <p of one, bounded almost ‘eve1ywhere,
ts a solution of the other, provided : f(z)CR (Definition 7. 1) and

[With ou, ;)=ÂK@, g)d:]

  
 

(D I,
(1°)

—'‘…f‘“éh<s>q<ÿ>
- [for all 135; h(5) #00 in G— D.,; q(ÿ) integrable over G];

(D I, —0 I, '
(,.)

'
(

f”…
( 5"éh<s)q(ÿ.J')

[forallbs;q(5,5')—>n with lJ—J'h

fl] K(b, ÿ)dÿ, d},<+ao (some b in G);
(3°) “

fl|K(z, ÿ)—K(5’, g)|dg,dg,—>o with |z—z’}
G .

(4°) fl!®’(5, 5)|2 dÿidÿ, is bounded almost everywhere.
.

G _

Thé proof of this result is based on Lemma 7.4. Let ! denote
a segment, which With its end points lies in G and is parallel to one
of the axes. To establish (7 . 7) it will suffice to show that

[[ÆKÜ', 5)‘P(Ë)dÿidÿg]df=Æ[[K(T»5)df]?(5)dg,dgz
Journ. de Math., tome XXV. — Fasc. 4, 1946. 49
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for

|
<p

| _4Ç_C ( almost everywhere in G). We have

K, d‘,d,déc K,‘ d,d*, d;_[Æl (r5>||9<3>11 ;… [[Æl<r1)lä J]|r|
nowby(3°)

”.; '(7,3)ldg.dg,é”|1((7,3)__K(b,ÿ)ldædÿa. (‘, G

+ K b,‘ d 1d 2<+Æl ( J)| 5 ZF 00

for “: in any closed subset of G—hence on 1 ; thus the last member in
the preceding formula is finite and (7 . 7) holds.

ln view of (3°) g(s) of (7 . 6) is continuous. On writing
J.,(l)= g(s)ds,

(“

by virtue of (7 . :) it is deduced that

(vas) Jo<l)=fl0(l,gmmdg.dgæ.
. G

Accordingly, by (I°), for any I containing :. one obtains
lJo(l)i !«b(l.;… ‘ , ”

||| éÆîl_l?(glldgad}zécch(..)<+œ
[here (." is the integral over G of q(j)] for all :- in G —— D0 ; hence

(7.13a) ïiîî-‘- q(s)d: <+oo (f01‘1350;50 in G—Do).!“ …   

Now q(ÿ) can be assumed as finite for every 3 in G since, if
.necessary, the values of q(j) can be suitably assigned on a set ofzero

‘ measure. By 1° '

Bîlflâ’T‘w éh(5)g(ÿ)<+œ (I:—s)

for all 3 in G and for 2 in G—D… Hence the lower and upper
strong derivates of the real and imaginary parts of (I)(I, ;) are finite
for : in G — D° (for all 9' in G). Accordingly

ŒQ(z,J)=Œ’(5‘,5 (forzinG—GJ>,
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where G,, is some set of zero measure, possibly depending on ;. '

Let { ÿ, } (v = 1 , 2, . . .) denote a set of points everywhere dense in G.
In view of the above the derivatives
(7.14) Œf,(z,5,,)=‘b'(z,ÿ,,) (v=1, a, ...)
exist for 2 in G — G° , where

G°=Do+2 G—7v’
m(G°)=o.

l

Let ; denote any point in G and the I,.(n= !, 2, . . .) denote any
sequence of intervals tending to :: (z in G — G,). By (2°)

[_ (D(In’ ?) _ _(D(In1 ÿ!)
"— ilïll _ llnl
  +rn,w l"n,v|éh(5)q(g: JV)'

In view of (7 . 14) all the limits lof the sequence l,, l,, . . . satisfy
U— (I’; (S» ZH) l éh(5)fi(ÿ, 2%)-

The numbers ! are independent of the ;}… Let ÿ,}(v, < v,<. . . ) be
a subsequence of { g,} converging to 5. Beplacing, above, 5, by j,],
in the limit we obtain
(x,) '

, limd); (:, gt,/_): [.

Necessarily_lis unique, that is the limit
(D(In’ 5) _ ! "f"””"I“ [I.]

exists and is independent of the choice of the sequence {v,—}. We
repeat now the above argument with {L,} replaced by any other
sequence of intervals {I:}, tending to ::. It is found that all the
limits l* of the sequence

'

<I><L‘L ?) li*z= |l*| (n=1,2,...)
”satisfy .

l* — (Il; (s. Jv)léh(5)q(âb 5v)
and”

limŒ_',(s, ÿ,,J)=l* (as ÿv,——>ÿ).
"i

By (I°) l*=l ; that is, ! is independent of the choice of the sequence
'

49-
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{
l,. Ï. Consequently the strong derivative

(7.14 a) 0;(:,5)=I;lim0;(:,j—,I.)=®'(z,j)
. V,

e.vists (and is finite) for all :— in G — G“ and for all 3 in G. It is
essential to note that G° is a set ofzero measure independent of3.

In view of the relation preceding (7. 13 a) '

'_Tiî 1/Ï®«ld>ç<fl)dfl.dfl:>
  

<—+—oc (forlD—so;soinG—Do)-

'l‘hns the strong derivates of the real and imaginary parts of

jÎ®<L 3)<.»<3—>dæ «la.
G

are finite in G — Do; accordingly

(745)
D;[i°«b«1.

J)?(;ï)d5n dJ==D..[ÎŒ<I.5>@<9)dàdÿ.
‘ G G

for almost all 3 in G (here D,; . . . denotes the strong derivative at z).
To prove (7.9) let : denote a point at which (7. 14 a), (7. 15)

hold (necessarily le(s) # œ ). It will suffice to secure

7. ' D.. «|» 1, 5 dg.d— .: <i>; 5 d"1 d“ ..(g) Æ< M.?) J j£< )cp<:fl>J.f
Let { l,.} denote a sequence tending to ;. We have

D..[Ïw. ÿ)ç(5>dzï. d5.=lim -M <p <5>dædÿ.. (; '  "wG} llnl
‘

. 0 In, ‘ —= hm
(… IJ)<p<gr>dÿ.dÿ.

G Il Il
.

=fl <DL- (:, ;71>@(J)d5«. dg...
G

In fact, by(1°) and since [gb
|
ée,

@ l… ‘___|(|lniJ)l ]ç(ÿ)|écfi(5)q(ÿ) (n=1, 2, ).;
the last member.is independent of n and is integrable in 3 over G;
this justifies transition from the second member, above, to the third.
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. The transition to the last member ensues by (7 . 14 a). Çonsequently
(7 . g) holds. _

—

It remains to establish (7.6). By (7. 13) and (7.9)

J.<z>=fl<b’<z.
;ï)e<5)dÿ. d5»' G

Thus in view (4°)

" |J'.<æ>|éq i«b’(s.:f>|dgï.d;1.éc.[flw(s.g>l=dg.d5.]G

(c, some constant). Whence [0J' (: )|is bounded almost everywhere;
togetherwith (7.13 a) this implies that (7. 1 a), (7.1 (7) hold for
g(z_). Since g(z)is continuous,;g(z)ÇR(7. 6)holds. Now (4°)is
identical with (7.8) and f(z) belongs to B by hypothesis. Thus,
under the assumptions of the Theorem, the conditions (7.5)-(7.8)
of the Lemma all hold. The theorem is proved.

8. INTEGRALÈQUATIONSou 1111: BASISor Tanonam 6 . 10. — We introduce

DEFINITION 8. 1. — A continuousfunction f(:) will be saidto be of
class B,. providedf( + Il) —f(s)

Ill—>»0 Il(8.1 a) <+ao (MG—E), 
{Where E= F.—l—E2+. ., n—lengO‘th of E,—<+œ(j=1, 2,'.. .),
p.(u) being admissible, and the modulus of continuity n(u) off(:)is

-of the form
(8.1 b) n(u)=œ(—u)%u) [n(u),w(d)—>owithu]

ahdproqzded
.

(8-I 6‘) I(Q)J'(ÿ-)léB (in G—Go; mGo=0),
Where

J(l)=ff(z) ds_—_J,+iJ..

TheclassB,, is additivein the sense thatc,f, + c,f, (c,, c, Constants)
belongs to B:, withf, , f,. Furthermore, in accordance with a
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remark subsequent to Theorem 6.. 10, (8. I‘d) implies that
(8.9) —°°<(Q)—Lé(Q)-Ê<+œ (in G—E;v=1,2).
Also, if jc B,, J (I) will satisfy the condition (p) [Definition (4. S)];
this ensues by Lemma 5. to. Consequently by virtue of Theoreïn
4.25, applied to J,, J,, one obtains '

(8.3)
fl<Q>J’<J>d5.

dg,=J(I) …… in G)
|

n‘heneverfbelongs to B,.

La… 8. 4. —— Every solution cp(ÿ) of (7 . 2), bounded almost every—
where in G, will be a solutionof the regular Fredholm integral equation
(7 . 3) [with (Q) derivation] and conversely, provided f(z) h(z, ÿ)
satisfy conditions(7 . 5), (7 . g), where B is replaced by B,, andordinary
derivatrbn is replaced,by (Q) derivation. We designate the modified -

conditions (7 . 5)—(7 . 9) by (8. 5-)—(8.g), respectively.
This result is established following the lines of the proof of Lemma

7 . .i , on making use of (8. 3) (for f and g) and of Théodoresco’s
theorem (6. 3).

Tui:oneu 8. 10. — The integral equations (7.2), (7.3) [With (Q)
derivatives] are equivalent in the sense that a solution ç: of one, bounded
almost everywhere, is a solution of the other, providedf(:.‘)ÇBpL (Defi—_

nition (8.1) and provided (with <I>(I, ?) =fK(:,ÿ)dz> one has :
- m

…)
'—°—fl‘-,‘Tg‘l'—éh<s)q<ÿ>,

[for all 135; h(z);fi œ inG—E; q(ÿ) integrable over G];

l—Ïll0(l, :o—Œ(I.5'>‘léh<s>q(æÿ')
[for all 135; q(;},'ÿ')—+o with l;}— g!|]:

(2°) v=ji.ll{(5',g)ldjldjg<+œ (forsomes’inG);
&

(3°) jf} (Q)0'(:, ;) [* «lg,, dg, boundest almost everywhere;
G

(4°) fl]K(:,,ÿ)—K(z,ÿ)]dÿ,dÿ,éal:,—zi (constanta).
(:
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In the above E is a sum ofa denumerable infinz‘ty (atMt) ofsets of

firiz‘te wlength.

We write
.

.. J,,(I)=Â)g(z)ds.

By (4°) and the definition ofg(z) in (8.6)
(8.11) ‘ ' Ig(z)—g(za)lék’lz—zil;
hence, (with :, denoting a point interior I)

'J°(I)='=lÂ.(g(z)"g(°‘ ))d5|ék’ …la—silldSI—zjklli

(le, k' constants) for squares I. Since (Q)Jo is defined with the aid
of a particular sequence of squares, the above implies that

I(Q)J'o(ÿ) | é/f-
Thus (8. 1 c) holds for g. Also, by (8. 1 l) it is observed that (8. 1 a)
is valin for g. The modulus of continuity no(u) of g(z) is k’u; thus,
with (8. 1 b) in view, on writing

Æu=œo(u)fl:—)

and on noting that on account of (4. 9) (where m = 2)
u2 .œo(u)=k’——>o (With a),Mit)

it is inferred that g satisfies- (8. 1 b). Hence g: B,, and (8.6) holds.
As a. consequenceof ( 4°), (2°)

fllK(z.—J)ldÿidÿeév+fllK(zflÿ)—K(s,ÿ)ldÿadÿzéV+aIS'—z..' G G

Accordingly (8. 7) is valid,
In view of(8. 7)
(8.12)

J.<I>=ÆŒ<I.
5)<p<5)dæd5»
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By ( 1 ) and inasmuch as

| @ |éc (almost everywhere), we have

l“JT°(II'IL ?:‘îc Jli%Ædÿ.dÿaé«rc—Vc(z)<+ oo (in G'— E]
6

for all interval 133 (c’ a constant). Thus

ŒŒ%|ÊŒ<+œ. ÎnÎ ”Till“ <+œ [Ijs;siuG—}E). 
Now m(E) : o; hence the extreme strong derivates of the real and
imaginary parts of (Il, J0 are finite almost everywhere. By & known
theorem this implies

'

‘DL(:, ;Ï)=W(s, ;1) [for:inG—G:nm(G;)=o].
J{,_,( :) =J3(s) (almost everywhere in G).

The asserlion for (DL holds for 5 in G — Gr“, where G° is independent
of3, contains E and has zero measure; this is established With the aid
of the second condition (1°), following the corresponding lines of
reasoning in section 7. Clearly

545£(Q>Fé<ü>l‘félfléñ
_

for any real valued interval function F(I). Accordingly the aboVe
yields
(8 13) ((Q)‘D'(:,;Ï)=®L(s,j) (forsinG—Go;allÿin G),

.
( (Q)JÇ,(:) =J3,(5) (almost everywhere in G).

We proceed to prove (8.9). By (8. 12) and (8. 13,) it Will suffice
to establish _

(8.9'> [J3.(s>=]Dmfl«b<l,5>ç<5)dædÿ.=fl@<a5><p<ÿ)dæd5.
G G

(D,:. . . : strong derivative at :) for almost all :. Let : be a point
for which le(s);£ 00 and (8. 13) holds. Let {L,} be a sequence of
intervals containing3 and —+ :. We have

. (D I… . … "
J:.(=>=h;nflü ([Inf‘)=p<5)dÿ.dÿ.=_ lun “’îflfl,‘“cp<ÿ>dædÿ.

G Il
  

=flÇ®:
(:, J)@(J)dÿadÿe—
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Here passage to the limit under the integral sign is justified since

lim ?%*.|Ë :d»; (:, ;;)

and since, by (1°), one has

l—L—ll‘P(lmJ)!W(J)léô'è(ä)fl<fl) [h<s)<+œt

where the last member is independent of n and is integrable in fl
over G. Thus (8.9’), (8.9) hold. The theorem is accordingly

.

established.
Theorem 7. 12, 8. 10 furnish the following result regarding repre

'
sentations of functions f(x) of a complex va‘riable.

If j(z)ÇR and Ic(z, ÿ) satisfies the conditions of Theorem 7.12,
while the regular Fredholm integral equation (7 . 3) has a solution ?
(necessarily bounded almost everywhere), then f(x) has the repre—
sentatmns
(8.14) f(s)=—l k‘3’ËÏ’ÏÇ‘ÎLÜ'dÏ" .…(z);

G
(

.
a(z) analytic

'\—'l
k(z, ) 1 ,:_ lcz,‘ .g_; J_;+ ( J) 

A similar statementcan be made for functions[(3): BE;-
-An analogous study of integral equations can be developped on

the basis of section 6‘ .

___-—


