Dans cet article, nous donnons des conditions nécessaires et des conditions suffisantes pour la contrôlabilité d’une équation de Schrödinger impliquant un opérateur sous-elliptique sur une variété compacte. Cet opérateur est le sous-laplacien d’une variété obtenue en quotientant un groupe de type Heisenberg par l’un de ses sous-groupes discrets. Cette classe de groupes nilpotents est un exemple important de groupes de Lie de pas 2. Le sous-laplacien est alors un opérateur sous-elliptique et nous montrons qu’à la différence de ce qui se passe pour le cas elliptique sur le tore ou sur des surfaces à courbures négatives, il existe un temps minimal de contrôlabilité pour l’équation de Schrödinger associée à ce sous-laplacien. Les principaux outils que nous utilisons sont des mesures semi-classiques à valeurs opérateurs construites via la théorie des représentations et une notion de paquets d’ondes semi-classiques que nous introduisons ici dans le contexte des groupes de type Heisenberg.
We give necessary and sufficient conditions for the controllability of a Schrödinger equation involving the sub-Laplacian of a nilmanifold obtained by taking the quotient of a group of Heisenberg type by one of its discrete sub-groups. This class of nilpotent Lie groups is a major example of stratified Lie groups of step 2. The sub-Laplacian involved in these Schrödinger equations is subelliptic, and, contrary to what happens for the usual elliptic Schrödinger equation for example on flat tori or on negatively curved manifolds, there exists a minimal time of controllability. The main tools used in the proofs are (operator-valued) semi-classical measures constructed by use of representation theory and a notion of semi-classical wave packets that we introduce here in the context of groups of Heisenberg type.
Accepté le :
Publié le :
Keywords: Sub-elliptic operator, control theory, observability, nilmanifold, H-type group
Mot clés : Opérateur sous-elliptique, théorie du contrôle, nilvariété, groupe de type Heisenberg
@article{JEP_2021__8__1459_0, author = {Fermanian Kammerer, Clotilde and Letrouit, Cyril}, title = {Observability and controllability for {the~Schr\"odinger} equation on quotients of groups of {Heisenberg} type}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {1459--1513}, publisher = {Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.176}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.176/} }
TY - JOUR AU - Fermanian Kammerer, Clotilde AU - Letrouit, Cyril TI - Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type JO - Journal de l’École polytechnique - Mathématiques PY - 2021 SP - 1459 EP - 1513 VL - 8 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.176/ DO - 10.5802/jep.176 LA - en ID - JEP_2021__8__1459_0 ER -
%0 Journal Article %A Fermanian Kammerer, Clotilde %A Letrouit, Cyril %T Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type %J Journal de l’École polytechnique - Mathématiques %D 2021 %P 1459-1513 %V 8 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.176/ %R 10.5802/jep.176 %G en %F JEP_2021__8__1459_0
Fermanian Kammerer, Clotilde; Letrouit, Cyril. Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type. Journal de l’École polytechnique - Mathématiques, Tome 8 (2021), pp. 1459-1513. doi : 10.5802/jep.176. http://www.numdam.org/articles/10.5802/jep.176/
[1] Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures, Amer. J. Math., Volume 137 (2015) no. 3, pp. 577-638 | DOI | MR | Zbl
[2] Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc. (JEMS), Volume 16 (2014) no. 6, pp. 1253-1288 | DOI | Zbl
[3] Non prolongement unique des solutions d’opérateurs ‘somme de carrés’, Ann. Inst. Fourier (Grenoble), Volume 36 (1986) no. 4, pp. 137-155 | DOI | MR | Zbl
[4] Dispersive estimates for the Schrödinger operator on step-2 stratified Lie groups, Anal. PDE, Volume 9 (2016) no. 3, pp. 545-574 | DOI | Zbl
[5] Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, J. Anal. Math., Volume 82 (2000), pp. 93-118 | DOI | Zbl
[6] Heat equation on the Heisenberg group: observability and applications, J. Differential Equations, Volume 262 (2017) no. 8, pp. 4475-4521 | DOI | MR | Zbl
[7] Minimal time issues for the observability of Grushin-type equations, Ann. Inst. Fourier (Grenoble), Volume 70 (2020) no. 1, pp. 247-312 http://aif.cedram.org/item?id=AIF_2020__70_1_247_0 | DOI | MR | Zbl
[8] Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Math., Springer, Berlin, 2007 | Zbl
[9] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), Volume 19 (1969) no. 1, pp. 277-304 | DOI | Numdam | Zbl
[10] Time optimal observability for Grushin Schrödinger equation, 2019 (to appear in Anal. PDE) | arXiv
[11] Control for Schrödinger operators on tori, Math. Res. Lett., Volume 19 (2012) no. 2, pp. 309-324 | DOI | Zbl
[12] Semiclassical analysis of dispersion phenomena, Analysis and partial differential equations: perspectives from developing countries (Springer Proc. Math. Stat.), Volume 275, Springer, Cham, 2019, pp. 84-108 | DOI | MR | Zbl
[13] Wigner measures and effective mass theorems, Ann. H. Lebesgue, Volume 3 (2020), pp. 1049-1089 | DOI | MR | Zbl
[14] Coherent states and applications in mathematical physics, Theoretical and Math. Physics, Springer, Dordrecht, 2012 | DOI | Zbl
[15] Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples, Cambridge Studies in Advanced Math., 18, Cambridge University Press, Cambridge, 1990 | Zbl
[16] Control of the Grushin equation: non-rectangular control region and minimal time, ESAIM Control Optim. Calc. Var., Volume 26 (2020), 3, 18 pages | DOI | MR | Zbl
[17] Mesures semi-classiques 2-microlocales, C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000) no. 7, pp. 515-518 | DOI | MR | Zbl
[18] Analyse à deux échelles d’une suite bornée de
[19] Quantum evolution and sub-Laplacian operators on groups of Heisenberg type, 2019 (to appear in J. Spectral Theory) | arXiv
[20] Semi-classical analysis on H-type groups, Sci. China Math., Volume 62 (2019) no. 6, pp. 1057-1086 | DOI | MR | Zbl
[21] Defect measures on graded Lie groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Volume 21 (2020), pp. 207-291 | DOI | MR | Zbl
[22] Mesures semi-classiques et croisement de modes, Bull. Soc. math. France, Volume 130 (2002) no. 1, pp. 123-168 | DOI | Numdam | MR | Zbl
[23] Propagation through generic level crossings: a surface hopping semigroup, SIAM J. Math. Anal., Volume 40 (2008) no. 1, pp. 103-133 | DOI | MR | Zbl
[24] Quantization on nilpotent Lie groups, Progress in Math., 314, Birkhäuser/Springer, Cham, 2016 | DOI | MR | Zbl
[25] Mesures semi-classiques et ondes de Bloch, Séminaire sur les Équations aux Dérivées Partielles, 1990–1991, École Polytechnique, Palaiseau, 1991 (Exp. No. XVI, 19 p.) | Numdam | Zbl
[26] Microlocal defect measures, Comm. Partial Differential Equations, Volume 16 (1991) no. 11, pp. 1761-1794 | DOI | MR | Zbl
[27] Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | DOI | MR | Zbl
[28] Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., Volume 50 (1997) no. 4, pp. 323-379 Erratum: Ibid. 53 (2000), no. 2, p. 280–281 | DOI | MR | Zbl
[29] Semiclassical quantum mechanics. I. The
[30] Ergodicité et limite semi-classique, Comm. Math. Phys., Volume 109 (1987) no. 2, pp. 313-326 http://projecteuclid.org/euclid.cmp/1104116844 | DOI | Zbl
[31] Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171 | DOI | MR | Zbl
[32] Contrôle interne exact des vibrations d’une plaque rectangulaire, Portugal. Math., Volume 47 (1990) no. 4, pp. 423-429 | Zbl
[33] Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., Volume 258 (1980) no. 1, pp. 147-153 | DOI | MR | Zbl
[34] Non-null-controllability of the Grushin operator in 2D, Comptes Rendus Mathématique, Volume 355 (2017) no. 12, pp. 1215-1235 | DOI | MR | Zbl
[35] Propagation through conical crossings: an asymptotic semigroup, Comm. Pure Appl. Math., Volume 58 (2005) no. 9, pp. 1188-1230 | DOI | MR | Zbl
[36] Tunneling estimates and approximate controllability for hypoelliptic equations, 2017 (to appear in Mem. Amer. Math. Soc.) | arXiv
[37] Control for hyperbolic equations, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), École Polytechnique, Palaiseau, 1992, p. 24 | Numdam | MR | Zbl
[38] Contrôle de l’équation de Schrödinger, J. Math. Pures Appl. (9), Volume 71 (1992) no. 3, pp. 267-291 | Zbl
[39] Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) (Math. Phys. Stud.), Volume 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73-109 | DOI | Zbl
[40] Subelliptic wave equations are never observable, 2020 | arXiv
[41] Observability of Baouendi-Grushin-type equations through resolvent estimates, 2020 (to appear in J. Inst. Math. Jussieu) | arXiv
[42] Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte, Recherches en Mathématiques Appliquées, 8, Masson, Paris, 1988 | Zbl
[43] Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993) no. 3, pp. 553-618 | DOI | MR | Zbl
[44] High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal., Volume 258 (2010) no. 3, pp. 933-955 | DOI | MR | Zbl
[45] The Schrödinger flow in a compact manifold: high-frequency dynamics and dispersion, Modern aspects of the theory of partial differential equations (Oper. Theory Adv. Appl.), Volume 216, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 275-289 | DOI | MR
[46] High-frequency dynamics for the Schrödinger equation, with applications to dispersion and observability, Nonlinear optical and atomic systems (Lect. Notes in Math.), Volume 2146, Springer, Cham, 2015, pp. 275-335 | DOI | MR | Zbl
[47] Two-microlocal regularity of quasimodes on the torus, Anal. PDE, Volume 11 (2018) no. 8, pp. 2111-2136 | DOI | MR | Zbl
[48] Observability and quantum limits for the Schrödinger equation on
[49] Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales, Ph. D. Thesis, École Polytechnique, Palaiseau (1996)
[50] A semi-classical picture of quantum scattering, Ann. Sci. École Norm. Sup. (4), Volume 29 (1996) no. 2, pp. 149-183 | DOI | Numdam | MR | Zbl
[51] Matrix coefficients and a Weyl correspondence for nilpotent Lie groups, Invent. Math., Volume 118 (1994) no. 1, pp. 1-36 | DOI | MR | Zbl
[52]
[53] Noncommutative harmonic analysis, Math. Surveys and Monographs, 22, American Mathematical Society, Providence, RI, 1986 | DOI | MR | Zbl
Cité par Sources :