The diagonal of the associahedra
[La diagonale de l’associaèdre]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 121-146.

Cet article introduit pour la première fois une méthode générale permettant de résoudre le problème de l’approximation de la diagonale de familles de polytopes satisfaisant à une propriété de cohérence par faces. On retrouve les cas classiques des simplexes et des cubes et on résout celui des associaèdres, appelés aussi polytopes de Stasheff. On montre que ce dernier cas vérifie une formule cellulaire facile à énoncer. Pour la première fois, nous munissons une famille de réalisations des associaèdres (celle de Loday) d’une structure d’opérade topologique cellulaire, dont nous montrons qu’elle est compatible avec les diagonales.

This paper introduces the first general method to solve the problem of the approximation of the diagonal for face-coherent families of polytopes. We recover the classical cases of the simplices and the cubes and we solve it for the associahedra, also known as Stasheff polytopes. We show that it satisfies an easy-to-state cellular formula. For the first time, we endow a family of realizations of the associahedra (the Loday realizations) with a topological and cellular operad structure; it is shown to be compatible with the diagonal maps.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.142
Classification : 52B11, 18M75, 18M70, 06A07
Keywords: Associahedra, approximation of the diagonal, operads, fiber polytopes, $\mathrm{A}_\infty $-algebras
Mot clés : Associaèdres, approximation de la diagonale, opérades, polytopes fibrés, $A_\infty $-algèbres
Masuda, Naruki 1 ; Thomas, Hugh 2 ; Tonks, Andy 3 ; Vallette, Bruno 4

1 Johns Hopkins University, Department of Mathematics 3400 N. Charles Street, Baltimore, MD 21218, USA
2 Département de mathématiques, Université du Québec à Montréal Local PK-5151, 201, Avenue du Président-Kennedy, Montréal, Canada
3 Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
4 Laboratoire Analyse, Géométrie et Applications, Université Sorbonne Paris Nord, CNRS, UMR 7539 93430 Villetaneuse, France
@article{JEP_2021__8__121_0,
     author = {Masuda, Naruki and Thomas, Hugh and Tonks, Andy and Vallette, Bruno},
     title = {The diagonal of the associahedra},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {121--146},
     publisher = {Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.142},
     mrnumber = {4191110},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.142/}
}
TY  - JOUR
AU  - Masuda, Naruki
AU  - Thomas, Hugh
AU  - Tonks, Andy
AU  - Vallette, Bruno
TI  - The diagonal of the associahedra
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 121
EP  - 146
VL  - 8
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.142/
DO  - 10.5802/jep.142
LA  - en
ID  - JEP_2021__8__121_0
ER  - 
%0 Journal Article
%A Masuda, Naruki
%A Thomas, Hugh
%A Tonks, Andy
%A Vallette, Bruno
%T The diagonal of the associahedra
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 121-146
%V 8
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.142/
%R 10.5802/jep.142
%G en
%F JEP_2021__8__121_0
Masuda, Naruki; Thomas, Hugh; Tonks, Andy; Vallette, Bruno. The diagonal of the associahedra. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 121-146. doi : 10.5802/jep.142. http://www.numdam.org/articles/10.5802/jep.142/

[AA17] Aguiar, Marcelo; Ardila, Federico Hopf monoids and generalized permutahedra, 2017 | arXiv

[Amo17] Amorim, Lino The Künneth theorem for the Fukaya algebra of a product of Lagrangians, Internat. J. Math., Volume 28 (2017) no. 4, 1750026, 38 pages | MR | Zbl

[Bro59] Brown, Edgar H. Jr. Twisted tensor products. I, Ann. of Math. (2), Volume 69 (1959), pp. 223-246 | DOI | MR | Zbl

[BS92] Billera, Louis J.; Sturmfels, Bernd Fiber polytopes, Ann. of Math. (2), Volume 135 (1992) no. 3, pp. 527-549 | DOI | MR | Zbl

[BV73] Boardman, John M.; Vogt, Rainer M. Homotopy invariant algebraic structures on topological spaces, Lect. Notes in Math., 347, Springer-Verlag, Berlin, 1973 | MR | Zbl

[CFZ02] Chapoton, Frédéric; Fomin, Sergey; Zelevinsky, Andrei Polytopal realizations of generalized associahedra, Canad. J. Math., Volume 45 (2002) no. 4, pp. 537-566 | DOI | MR | Zbl

[CSZ15] Ceballos, Cesar; Santos, Francisco; Ziegler, Günter M. Many non-equivalent realizations of the associahedron, Combinatorica, Volume 35 (2015) no. 5, pp. 513-551 | DOI | MR | Zbl

[EML54] Eilenberg, Samuel; Mac Lane, Saunders On the groups H(Π,n). II. Methods of computation, Ann. of Math. (2), Volume 60 (1954), pp. 49-139 | DOI | MR

[EZ53] Eilenberg, Samuel; Zilber, Joseph A. On products of complexes, Amer. J. Math., Volume 75 (1953), pp. 200-204 | DOI | MR | Zbl

[For08] Forcey, Stefan Convex hull realizations of the multiplihedra, Topology Appl., Volume 156 (2008) no. 2, pp. 326-347 | DOI | MR | Zbl

[GKZ08] Gelfand, Israel M.; Kapranov, Michael M.; Zelevinsky, Andrei V. Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008 | Zbl

[GZ97] Gaberdiel, Matthias R.; Zwiebach, Barton Tensor constructions of open string theories. I. Foundations, Nuclear Phys. B, Volume 505 (1997) no. 3, pp. 569-624 | DOI | MR | Zbl

[Lod04] Loday, Jean-Louis Realization of the Stasheff polytope, Arch. Math. (Basel), Volume 83 (2004) no. 3, pp. 267-278 | MR | Zbl

[LV12] Loday, Jean-Louis; Vallette, Bruno Algebraic operads, Grundlehren Math. Wiss., 346, Springer-Verlag, Berlin, 2012 | MR | Zbl

[May72] May, J.P. The geometry of iterated loop spaces, Lect. Notes in Math., 271, Springer-Verlag, Berlin, 1972 | MR

[MS06] Markl, Martin; Shnider, Steve Associahedra, cellular W-construction and products of A -algebras, Trans. Amer. Math. Soc., Volume 358 (2006) no. 6, pp. 2353-2372 | DOI | MR | Zbl

[MSS02] Markl, Martin; Shnider, Steve; Stasheff, James D. Operads in algebra, topology and physics, Math. Surveys and Monographs, 96, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[Pro11] Prouté, Alain A -structures. Modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations, Repr. Theory Appl. Categ. (2011) no. 21, pp. 1-99 (Reprint of the 1986 original, With a preface to the reprint by Jean-Louis Loday) | MR | Zbl

[Sei08] Seidel, Paul Fukaya categories and Picard-Lefschetz theory, Zürich Lectures in Advanced Math., European Mathematical Society, Zürich, 2008 | DOI | MR | Zbl

[Ser51] Serre, Jean-Pierre Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2), Volume 54 (1951), pp. 425-505 | DOI | Zbl

[SS97] Stasheff, James D.; Shnider, Steve From operads to “physically” inspired theories (Appendix B), Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) (Contemp. Math.), Volume 202, American Mathematical Society, Providence, RI, 1997, pp. 53-81

[Sta63] Stasheff, James D. Homotopy associativity of H-spaces. I & II, Trans. Amer. Math. Soc., Volume 108 (1963), p. 275-292 & 293–312 | MR | Zbl

[Sta70] Stasheff, James D. H-spaces from a homotopy point of view, Lect. Notes in Math., 161, Springer-Verlag, Berlin, 1970 | MR | Zbl

[Ste47] Steenrod, Norman E. Products of cocycles and extensions of mappings, Ann. of Math. (2), Volume 48 (1947), pp. 290-320 | DOI | MR | Zbl

[SU04] Saneblidze, Samson; Umble, Ronald Diagonals on the permutahedra, multiplihedra and associahedra, Homology Homotopy Appl., Volume 6 (2004) no. 1, pp. 363-411 | DOI | MR | Zbl

[Tam51] Tamari, Dov Monoïdes préordonnés et chaînes de Malcev, Thèse de Mathématique, Paris (1951)

[Zie95] Ziegler, Günter M. Lectures on polytopes, Graduate Texts in Math., 152, Springer-Verlag, New York, 1995 | MR | Zbl

Cité par Sources :