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POSITIVE MEASURE OF KAM TORI FOR

FINITELY DIFFERENTIABLE HAMILTONIANS

by Abed Bounemoura

Abstract. — Consider an integer n > 2 and real numbers τ > n−1 and ` > 2(τ+1). Using ideas
of Moser, Salamon proved that individual Diophantine tori persist for Hamiltonian systems
which are of class C`. Under the stronger assumption that the system is a C`+τ perturbation
of an analytic integrable system, Pöschel proved the persistence of a set of positive measure of
Diophantine tori. We improve the latter result by showing it is sufficient for the perturbation to
be of class C` and the integrable part to be of class C`+2. The main novelty consists in showing
that one can control the Lipschitz regularity, with respect to frequency parameters, of the
invariant torus, without controlling the Lipschitz regularity of the quasi-periodic dynamics on
the invariant torus.

Résumé (Mesure positive de tores invariants pour les systèmes hamiltoniens en différentiabilité
finie)

Soient un entier n > 2 et des réels τ > n − 1 et ` > 2(τ + 1). En utilisant des idées de
Moser, Salamon a prouvé que les tores diophantiens individuels persistent pour les systèmes
hamiltoniens de classe C`. Sous l’hypothèse plus forte que le système est une perturbation de
classe C`+τ d’un système analytique intégrable, Pöschel a prouvé la persistance d’un ensemble
de mesure positive de tores diophantiens. Nous améliorons le dernier résultat en montrant
qu’il suffit que la perturbation soit de classe C` et que la partie intégrable soit de classe
C`+2. La principale nouveauté consiste à montrer que l’on peut contrôler la régularité Lipschitz
par rapport aux fréquences des tores invariants sans contrôler la régularité Lipschitz de la
dynamique quasi-périodique sur chaque tore.
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1114 A. Bounemoura

1. Introduction and main results

In this paper, we consider small perturbations of integrable Hamiltonian systems,
which are defined by a Hamiltonian function of the form

H(q, p) = h(p) + f(q, p), (q, p) ∈ Tn × Rn

where n > 2 is an integer and the norm |f | = ε (in a suitable space of functions) is a
small parameter. The Hamiltonian system associated to this function is then given by{

q̇ = ∇pH(q, p) = ∇h(p) +∇pf(q, p),

ṗ = −∇qH(q, p) = −∇qf(q, p)

where ∇qH and ∇pH denote the vector of partial derivatives with respect to q =

(q1, . . . , qn) and p = (p1, . . . , pn). When ε = 0, the system associated to H = h is
trivially integrable: all solutions are given by

(q(t), p(t)) = (q(0) + t∇h(p(0)), p(0)))

and therefore, for each fixed p ∈ Rn, letting ω = ∇h(p) ∈ Rn, the sets Tω = Tn×{p}
are invariant tori on which the dynamics is given by the linear flow with frequency ω.
The integrable Hamiltonian h is said to be non-degenerate on some ball B ⊆ Rn if
the map ∇h : B → Rn is a diffeomorphism onto its image Ω = ∇h(B).

It is a fundamental result of Kolmogorov that many of these unperturbed quasi-
periodic tori persist under any sufficiently small perturbation ([Kol54]), provided the
system is real-analytic and the integrable part is non-degenerate. More precisely,
Kolmogorov proved that given any vector ω ∈ Ω satisfying the following Diophantine
condition:

(Dγ,τ ) |k · ω| > γ|k|−τ , k = (k1, . . . , kn) ∈ Zn r {0}, |k| = |k1|+ · · ·+ |kn|,

where γ > 0 and τ > n − 1 are fixed, the associated torus Tω persists, being only
slightly deformed into another Lagrangian real-analytic quasi-periodic torus Tω with
the same frequency. Of course, there are uncountably many many vectors ω ∈ Dγ,τ ,
and thus the theorem of Kolmogorov gives uncountably many invariant tori. Even
more, the set Dγ,τ does have positive Lebesgue measure when τ > n−1; the measure
of its complement in Ω is of order γ, and hence one expects the set of quasi-periodic
invariant tori to have positive Lebesgue measure in phase space. Unfortunately, this
does not follow directly from the proof of Kolmogorov, but this was later showed to be
correct by Arnold ([Arn63]) who introduced a different method to prove the theorem
of Kolmogorov. Nowadays, the most common strategy to obtain positive measure is
to show that the regularity of the family Tω with respect to ω is Lipschitz close to
the unperturbed family Tω, as this immediately allows to transfer a positive measure
set in the space of frequencies into a positive measure set in phase space. We refer to
the nice survey [Pö01] for this Lipschitz dependence in the analytic case.

After Kolmogorov’s breakthrough, an important contribution was made by Moser
who proved that the Hamiltonian need not be real-analytic (see [Mos62] for the case
of twist maps, which corresponds to an iso-energetic version of the theorem for n = 2);
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Positive measure of KAM tori for finitely differentiable Hamiltonians 1115

it is sufficient for the Hamiltonian to be of finite but sufficiently high regularity (of
course, the perturbed torus is then only finitely differentiable). Following an idea of
Moser ([Mos70]) and a work of Pöschel ([Pö80]), Salamon proved in [Sal04] that for the
persistence of an individual tori Tω with ω ∈ Dγ,τ , it is sufficient to require the system
to be of class C`, with ` > 2(τ + 1): the torus is then of class Cτ+1 and the dynamic
on it is C1-conjugated to the linear flow. The regularity of the perturbation can be
mildly improved as was shown in [Alb07], and it may be possible to actually reach the
value ` = 2(τ + 1), but in any event the theorem cannot be true for ` < 2(τ + 1) as
was proved in [CW13]. Let us point out that for twist maps of the annulus, optimal
regularity results follow from the work of Herman ([Her86]). All those results concern
the persistence of individual quasi-periodic tori. As for the persistence of a set of
positive measure, after an initial result of Lazutkin again for twist maps ([Laz73])
that required an excessive amount of differentiability, the most general result so far
is due to Pöschel. In [Pö82], he proved the persistence of a set of positive measure
under the assumption that the perturbation is of class C`+τ and the integrable part
is real-analytic. Actually, under these assumptions, he proved that the regularity with
respect to ω is C1 in the sense of Whitney (and if the perturbation is more regular,
then one has more regularity with respect to ω); this implies in particular Lipschitz
dependence. However, the regularity assumptions in the work of Pöschel are definitely
stronger than those in the work of Salamon, as not only the perturbation is required
to be of class C`+τ instead of class C` but the integrable part is required to be real-
analytic (such analyticity assumption is also present in [Mos70], [Pö80] and [Alb07]).

It is our purpose here to actually prove that we have persistence of a set of positive
measure of quasi-periodic tori provided the perturbation is of class C`, as in [Sal04],
and the integrable part is of class C`+2, which is slightly stronger than the assumption
in [Sal04] but still much better than the analyticity assumption of [Pö82] (we observe,
in Remark 2.1 below, that for a fixed ω, we can actually assume h to be of class C`
and not necessarily integrable, and one could recover [Sal04]).

It is important to point out, however, that we essentially do not improve the main
technical result of [Pö82]; rather we take a different approach to the problem. To
explain this, let us recall that one can look at the perturbed invariant torus Tω in at
least two way: either as the image of an embedding Ψω : Tn → Tn×B into phase space,
which moreover conjugates the restricted dynamics to a linear flow, or as the graph
of a function Γω : Tn → B defined on the configuration space. The main observation
we will use is that the graph is usually more regular than the embedding. This is not
new, as for instance in [Sal04] the embedding is only C1 while the graph is Cτ+1,
and this is also not surprising. Indeed, the graph Γω only gives the invariant torus,
whereas the embedding Ψω also encodes the dynamical information, as it conjugates
the restricted dynamics to a linear flow on the torus, so there is a priori no reason
for these two objects to have the same regularity. It is well-known that it is hard to
actually construct the invariant graph without prescribing the dynamic on it. Yet we
will be able to use this basic observation to show that under our regularity assumption

J.É.P. — M., 2020, tome 7



1116 A. Bounemoura

(f is C` and h is C`+2 for ` > 2(τ + 1)), we can construct Ψω and Γω in such a way
that Γω is Lipschitz with respect to ω, without knowing whether this is the case
for Ψω. Now, Pöschel proved that Ψω is Lipschitz with respect to ω, provided f is
C`+τ and h is analytic; we could recover (and slightly extend this result) simply by
replacing ` by `+τ in our assumption, but clearly this does not improve in any way the
measure estimate in phase space of the set of perturbed invariant tori. To summarize
this discussion, Pöschel proves that not only the torus Tω but also the restricted
dynamics is Lipschitz with respect to ω, whereas we only prove, under weaker and
almost optimal regularity assumption (at least concerning the perturbation), the first
assertion, which is the one needed to have a set of positive measure in phase space.

We now state more precisely our result, and consider

(∗)


H : Tn ×B → R,
H(q, p) = h(p) + f(p, q),

h non-degenerate.

Recall that Ω = ∇h(B), we assume that its boundary ∂Ω is piecewise smooth and
for fixed constants γ > 0 and τ > n − 1, we define the following set of Diophantine
vectors

Ωγ,τ = {ω ∈ Dγ,τ ∩ Ω | d(ω, ∂Ω) > γ}.
As we already explained, when f = 0, the phase space is trivially foliated by invariant
quasi-periodic tori Tω which are invariant by H = h; since h is non-degenerate, ∇h
has an inverse (∇h)−1 and the Lipschitz constant of Tω with respect to ω, that we
shall denote by Lip(Tω), is nothing but the Lipschitz constant Lip((∇h)−1) of (∇h)−1.
For simplicity, we shall denote the C` norms of functions by |·|`, without referring to
their domain of definition which should be clear from the context.

Theorem A. — Let H be as in (∗) of class C` with ` > 2(τ + 1), and assume that

(1.1) ε = |f |` 6 cγ2

for some small constant c > 0 which depends only on n, τ , ` and the norms |h|`+2

and |(∇h)−1|`. Then there exists a set

Kγ,τ =
⋃

ω∈Ωγ,τ

Tω ⊆ Tn ×B,

where each Tω is an invariant Lagrangian torus of class Cτ+1, Lipschitz with respect
to ω, and on which the Hamiltonian flow is C1-conjugated to the linear flow with
frequency ω. Moreover, as ε goes to zero, Tω converges to Tω in the Cτ+1 topology
and Lip(Tω) converges to Lip(Tω). Finally, we have the measure estimate

Leb(Tn ×B r Kγ,τ ) 6 Cγ

where Leb denotes the Lebesgue measure and C > 0 is a large constant.

The last part of the statement, concerning the measure estimate, is a well-known
consequence of the first part, so we shall not give details and refer to [Pö01] for
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instance; we would like to point out that Lip(Tω) is indeed close Lip(Tω), unlike [Pö01]
where a different embedding is studied for which one has to use a weighted norm. Let
us also add that we could have proved that Tω is actually C1 in the sense of Whitney
with respect to ω, but we have chosen not to do so (in order not to introduce this
notion, as well as anisotropic differentiability, see [Pö82] for instance).

Comment. — After this article was submitted, a preprint appeared on the Arxiv
(“A KAM Theorem for finitely differentiable Hamiltonian systems” by Comlan Ed-
mond Koudjinan, arXiv:1909.04099v1) in which the author proves, partly using
ideas of our paper, a similar result with a better regularity assumption on h (C` in-
stead of C`+2) at the expense of a worse measure estimate for the complement of the
set of tori (of order ε1/2−ν/` instead of ε1/2).

Acknowledgements. — This work was done while I was at MSRI, during the thematic
program “Hamiltonian systems, from topology to applications through analysis”. It is
a pleasure for me to thank Pierre Berger for asking me the question that lead to the
result, and Jacques Féjoz for many fruitful conversations. I have also benefited from
partial funding from the ANR project Beyond KAM.

2. KAM theorem with parameters

In this section, following [Pö01] and [Pop04], we will deduce Theorem A from a
KAM theorem in which the frequencies are taken as independent parameters.

Let us consider the Hamiltonian H = h+ f as in (∗), with Ω = ∇h(B) and where
we recall that Ωγ,τ is the set of (γ, τ)-Diophantine vectors in Ω having a distance at
least γ from the boundary ∂Ω. Now choose Ω̃ ⊆ Ω a neighborhood of Ωγ,τ such that
both the distance of Ωγ,τ to ∂Ω̃ and Ω̃ to ∂Ω is at least γ/2. Since ∇h : B → Ω

is a diffeomorphism, we can define B̃ = (∇h)−1(Ω̃). For p0 ∈ B̃, we expand h in a
sufficiently small ball of radius ρ > 0 around p0: writing p = p0 +I for I in the ball Bρ
of radius ρ centered at zero, we have that p ∈ B provided

(2.1) ρ 6 (2|h|`+2)−1γ

and under this assumption, we can write

h(p) = h(p0) +∇h(p0) · I +

∫ 1

0

(1− t)∇2h(p0 + tI)I · Idt.

As ∇h : B̃ → Ω̃ is a diffeomorphism, instead of p0 we can use ω = ∇h(p0) as a new
variable, and we write

h(p) = e(ω) + ω · I + Ph(I, ω)

with

(2.2) e(ω) = h((∇h)−1ω), Ph(I, ω) =

∫ 1

0

(1− t)∇2h((∇h)−1ω + tI)I · Idt.

Letting θ = q and

Pf (θ, I, ω) = f(q, p) = f(θ, p0 + I) = f(θ, (∇h)−1ω + I),

J.É.P. — M., 2020, tome 7
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1118 A. Bounemoura

we eventually arrive at

(2.3) h(q, p) = H(θ, I, ω) = e(ω) + ω · I + Ph(I, ω) + Pf (θ, I, ω),

where we recall that I varies in a small ball of radius ρ > 0 around zero. Since h is
of class C`+2 and f is of class C`, obviously Ph and Pf are of class C`. Moreover, if
the C` norm of f is small then so is the C` norm of Pf but unfortunately this is not
necessarily the case for the C` norm of Ph, not matter how small we choose ρ. We will
therefore rescale the variable I (another essentially equivalent way to deal with this
issue is to use a weighted norm as in [Pop04]): we consider

(2.4)
{
ρ−1H(θ, ρI, ω) = eρ(ω) + ω · I + Pρ(θ, I, ω),

eρ(ω) = ρ−1e(ω), Pρ(θ, I, ω) = ρ−1Ph(ρI, ω) + ρ−1Pf (θ, ρI, ω),

where now I varies in the unit ball B1 around the origin, and it is easy to observe
that the C` norm of Pρ will be small provided we choose ρ small. As a side remark,
the term eρ will be large, but its size is irrelevant to our problem (it simply does not
appear in the Hamiltonian vector field).

Remark 2.1. — Observe that we can also write

ρ−1Ph(ρI, ω) = ρ−1h((∇h)−1ω + ρI)− ρ−1h((∇h)−1ω)− ω · I.

So for a fixed ω, looking at Ph as a function of I only, the above expression shows
that it is sufficient for h to be of class C` for Ph to be of class C` and with a C`
norm of order ρ. Moreover, for a fixed ω, clearly h needs not be integrable (it suffices
to consider h(q, p) with h(q, 0) constant and ∇ph(q, 0) = ω, as the fact that Ph is
independent of θ will not play any role in the sequel). For a variable ω, we need at
least h to be of class C`+1 in order to have Ph of class C`, and we required h to be of
class C`+2 so that the C` norm of Ph is of order ρ.

This discussion leads us to consider the following abstract Hamiltonian:

(∗∗)
{
H : Tn ×B1 × Ω̃→ R,
H(θ, I, ω) = e(ω) + ω · I + P (θ, I, ω).

We shall consider ω as a parameter, so when convenient we will write H(θ, I, ω) =

Hω(θ, I). Theorem A will be obtained from the following statement.

Theorem B. — Let H be as in (∗∗) of class C` with ` > 2(τ+1). There exists a small
constant c̃ > 0 which depends only on n, τ and ` such that if

(2.5) ε = |P |` 6 c̃γ

then the following holds true. There exists a continuous map ϕ : Ωγ,τ → Ω̃, and for
each ω ∈ Ωγ,τ , a C1 map Ψω = (Uω, Gω) : Tn → Tn ×B1 such that Γω = Gω ◦ U−1

ω :

Tn → B1 is of class Cτ+1 and:
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(1) The set

Ψω(Tn) = {(Uω(θ), Gω(θ)) | θ ∈ Tn} = {(θ,Γω(θ) | θ ∈ Tn)}

is an embedded Lagrangian torus invariant by the flow of Hϕ(ω) with

XHϕ(ω)
◦Ψω = ∇Ψω · ω

and moreover, |Uω − Id|1 and |Γω|τ+1 converge to zero as ε goes to zero;
(2) The map ϕ and Γ are Lipschitz in ω and moreover, Lip(ϕ − Id) and Lip(Γ)

converge to zero as ε goes to zero.

Theorem B will be proved in the next section; here we will show how this easily
implies Theorem A.

Proof of Theorem A. — Let H be as in (∗), and choose ρ =
√
ε. With this choice, it

follows from (2.2), (2.3) and (2.4) that H can be written as in (∗∗) with ε = C̃
√
ε,

with a large constant C̃ that depends only n, `, the C`+2 norm of h and the C`
norm of (∇h)−1. In view of the assumption (1.1) of Theorem A, both (2.1) and the
assumption (2.5) of Theorem B are satisfied and it suffices to define

Tω = {(θ,Γω(θ) + (∇h)−1(ϕ(ω))) | θ ∈ Tn}

so that the conclusions of Theorem A follow from those of Theorem B. �

3. Proof of Theorem B

Before starting the proof of Theorem B, we observe, as in [Pö82], that by scaling
the frequency variables ω, it is enough to prove the statement for a normalized value
of γ, so without loss of generality, we may assume that γ = 1 in the sequel. As before,
observe that the term e gets transform into γ−1e, but its size is of no importance. Let
us also introduce some notations. We set ν = τ + 1, our regularity assumption then
reads ` > 2ν and thus we can find real numbers λ and χ such that

(3.1) ` = λ+ ν + χ, χ > 0, κ = λ− ν − χ = 2λ− ` > 0.

For a later purpose, associated to κ = 2λ− ` we defined above we introduce the real
number 0 < δ < 1 defined by

(3.2) δ = 18−1/κ.

In this paper, we do not pay attention to how constants depend on the dimension n,
the Diophantine exponent τ and the regularity `, as they are all fixed. Hence from
now on, we shall use a notation of [Pö01] and write

u<· v (respectively u ·<v)

if for some constant C > 1 depending only on n, τ and ` we have u 6 Cv (respectively
Cu 6 v). We will also use the notation u=· v and u ·= v which is defined in a similar
way.
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1120 A. Bounemoura

3.1. Analytic smoothing. — In this section, we will approximate our perturbation P
in (∗∗) by a sequence of analytic perturbations Pj , j ∈ N, defined on suitable complex
domains. Using bump functions, we first extend, keeping the same notations, P , which
is initially defined on Tn×B1×Ω̃, as a function defined on Tn×Rn×Rn with support
in Tn × B2 × Ω. This only changes the C` norm of P by a multiplicative constant
which depends only on n and `.

Given 0 < u0 6 1, consider the geometric sequence uj = u0δ
j where δ is defined

in (3.2). Associated to this sequence we define a decreasing sequence of complex
domains

(3.3) Uj = {(θ, I, ω) ∈ Cn/Zn × Cn × Cn |
Re(θ, I, ω) ∈ Tn ×B2 × Ω, |Im(θ, I, ω)| 6 uj}

where | . | stands, once and for all, for the supremum norm of vectors. The supre-
mum norm of a real-analytic (vector-valued) function F : U → Cp, p > 1, will be
denoted by

|F |U = sup
z∈U
|F (z)|.

We have the following approximation result.

Proposition 3.1. — Let P be as in (∗∗), and let uj = u0δ
j for j ∈ N with 0 < u0 6 1.

There exists a sequence of analytic functions Pj defined on Uj, j ∈ N, with

|P0|U0
<· |P |`, |Pj+1 − Pj |Uj+1

<·u`j |P |`, lim
j→+∞

|Pj − P |1 = 0.

This proposition is well-known, we refer to [Zeh75] or [Sal04] for a proof. It is
important to observe that the implicit constant in the above statement do not depend
on u0, which has yet to be chosen.

3.2. Analytic KAM step. — In this section, we state an elementary step of an an-
alytic KAM theorem with parameters, following the classical exposition of Pöschel
([Pö01]) but with some modifications taken from [Rü01]. Given s, r, h real numbers
such that 0 6 s, r, h 6 1, we let

Vs = {θ ∈ Cn/Zn | |Im(θ)| < s},
Ir = {I ∈ Cn | |I| < r},
Wh = {ω ∈ Cn | |ω − Ω1| < h}

and we define
Ds,r,h = Vs ×Ir ×Wh

which is a complex neighborhood of respectively Tn × {0} × Ω1, and where Ω1 is a
set of (1, τ)-Diophantine vectors having a distance at least 1 from the boundary of Ω.
Consider a function H, which is real-analytic on Ds,r,h, of the form

(∗∗∗)
{
H(θ, I, ω) = N(I, ω) +R(θ, I, ω) = e(ω) + ω · I +R(θ, I, ω),

|R|s,r,h = |R|Ds,r,h < +∞.
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Positive measure of KAM tori for finitely differentiable Hamiltonians 1121

Again, the function H = N +R should be considered as a real-analytic Hamiltonian
on Vs × Ir, depending analytically on a parameter ω ∈ Wh. To such Hamiltonians,
we will apply transformations of the form

F = (Φ, ϕ) : (θ, I, ω) 7→ (Φ(θ, I, ω), ϕ(ω)) = (Φω(θ, I), ϕ(ω))

which consist of a parameter-depending change of coordinates Φω and a change of
parameters ϕ. Moreover, setting Ds,h = Vs×Wh, our change of coordinates will be of
the form

Φ(θ, I, ω) = (U(θ, ω), V (θ, I, ω)) = (θ + E(θ, ω), I + F (θ, ω) · I +G(θ, ω))

with
E : Ds,h −→ Cn, F : Ds,h −→Mn(C), G : Ds,h −→ Cn

and for each fixed parameter ω, Φω will be symplectic and Uω is a real-analytic
diffeomorphism of Tn. The composition of such transformations

F = (Φ, ϕ) = (U, V, ϕ) = (E,F,G, ϕ)

is again a transformation of the same form, and we shall denote by G the groupoid
of such transformations. For functions defined on Ds,h, we will denote by ∇θ (respec-
tively ∇ω) the vector of partial derivatives with respect to θ (respectively with respect
to ω). We have the following proposition.

Proposition 3.2. — Let H = N+R be as in (∗∗∗), and suppose that |R|s,r,h 6 ε with

(3.4)


ε ·<η2rσν ,

ε ·<hr,
h 6 (2Kν)−1, K =·σ−1 log(nη−2),

where 0 < η < 1/8 and 0 < σ < s/5. Then there exists a transformation

F = (Φ, ϕ) = (U, V, ϕ) : Ds−4σ,ηr,h/4 −→ Ds,r,h, U−1
ω : Vs−5σ −→ Vs−4σ

that belongs to G , such that, letting |·|∗ the supremum norm on the domain
Ds−4σ,ηr,h/4 and |·| the supremum norm on the domain Ds−5σ,ηr,h/4, we have

(3.5) H ◦F = N+ +R+, |R+| 6 9η2ε

and

(3.6)


|E|∗<· ε(rστ )−1, |∇θE|<· ε(rσν)−1, |∇ωE|<· ε(hrστ )−1,

|F |∗<· ε(rσν)−1, |∇θF |<· ε(rσν+1)−1, |∇ωF |<· ε(hrσν)−1,

|G|∗<· ε(σν)−1, |∇θG|<· ε(σν+1)−1, |∇ωG|<· ε(hσν)−1,

|ϕ− Id|<· εr−1, |∇ϕ− Id|<· ε(hr)−1.

The above proposition is the KAM step of [Pö01], up to some differences we now
describe. The main difference is that in the latter reference, instead of (3.4) the
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following conditions are imposed (comparing notations, we have to put P = R and
α = 1):

(3.7)


ε ·<ηrσν ,
ε ·<hr,
h 6 (2Kν)−1

with a free parameter K ∈ N∗, leading to the following estimate

(3.8) |R+|<· (ε(rσν)−1 + η2 +Kne−Kσ)ε.

instead of (3.5). The last two terms in the estimate (3.8) comes from the approxima-
tion of R by a Hamiltonian R̂ which is affine in I and a trigonometric polynomial in θ
of degree K; to obtain such an approximation, in [Pö01] the author simply truncates
the Taylor expansion in I and the Fourier expansion in θ to obtain the following
approximation error

|R− R̂|s−σ,2ηr,h<· (η2 +Kne−Kσ)ε.

Yet we can use a more refined approximation result, which allows us to get rid of the
factor Kn, namely [Rü01, Th. 7.2] (choosing, in the latter reference, β1 = · · · = βn =

1/2 and δ1/2 = 2η for δ 6 1/4); with the choice of K as in (3.4), this gives another
approximation R̃ (which is nothing but a weighted truncation, both in the Taylor and
Fourier series) which is still affine in I and a trigonometric polynomial in θ of degree
bounded by K, and a simpler error

|R− R̃|s−σ,2ηr,h 6 8η2ε.

As for the first term in the estimate (3.8), it can be easily bounded by η2ε in view of
the first part of (3.4) which is stronger than the first part of (3.7) required in [Pö01].
Let us point out that we will use Proposition 3.2 in an iterative scheme which will not
be super-linear as η will be chosen to be a small but fixed constant, and thus having
an estimate of the form (3.5) will be more convenient for us.

There are also minor differences with the statement in [Pö01]. The first one is
that we observe that the coordinates transformation is actually defined on a domain
Ds−4σ,ηr,h/4 which is slightly larger than the domain Ds−5σ,ηr,h/4 on which the new
perturbation R+ is estimated. The angle component of the transformation Uω(θ) =

U(θ, ω) = θ+E(θ, ω) actually sends Vs−4σ into Vs−3σ so that its inverse is well-defined
on Vs−5σ and maps it into Vs−4σ as stated. This simple observation will be important
later, as this will imply an estimate of the form

|G ◦ U−1| 6 |G|∗

which will ultimately lead to an invariant graph which is more regular than the in-
variant embedding. The second one is that we expressed the estimates (3.6) in a
different, more cumbersome, way than it is in [Pö01] where weighted matrices are
used. However, even though the use of weighted matrices is more elegant, they do not
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take into account the structure of the transformation which will be important in the
convergence proof of Theorem B (see the comment after Proposition 3.5 below).

In the proof of Theorem B, Proposition 3.2 will be applied infinitely many times
with sequences 0 < sj 6 1, 0 < rj 6 1 and 0 < hj 6 1 that we shall now define. First
for 0 < s0 6 1 to be chosen later (in the proof of Proposition 3.4), we simply put

(3.9) sj = s0δ
j , j ∈ N,

where 0 < δ < 1 is the number defined in (3.2). Observe that this implies that
Proposition 3.2 will be applied at each step with σ = σj defined by

(3.10) σj = (1− δ)sj/5

so that sj+1 = sj − 5σj . Let us also define

(3.11) s∗j+1 = sj − 4σj > sj .

Then recall from (3.1) that we have

` = λ+ ν + χ, χ > 0, λ > ν + χ.

We now define

(3.12) rj = sλj = sλ0δ
jλ = r0η

j , η = δλ, j ∈ N.

Our choice of δ in (3.2) was made in order to have

(3.13) 9η2 = 9δ2λ = 9δκδ` = δ`/2.

Finally, in view of the definition of σj in (3.10) and the choice of η above, we define

(3.14) hj ·= sνj , j ∈ N.

with a suitable implicit constant in order for the last condition of (3.4) to be sat-
isfied. Let us further denote Dj = Dsj ,rj ,hj , D∗j = Ds∗j ,rj ,hj

and |·|j and |·|∗j the
supremum norm on those domains. The following statement is a direct consequence
of Proposition 3.2 with our choices of sequences, since hj+1 6 hj/4 for j ∈ N, and the
equality (3.13).

Proposition 3.3. — Let Hj = Nj + Rj be as in (∗∗∗), and suppose that |Rj |j 6 εj
for j ∈ N with

(3.15) εj <· sλ+ν
j .

Then there exists a transformation

Fj+1 = (Φj+1, ϕj+1) = (Uj+1, Vj+1, ϕj+1) : D∗j+1 −→ Dj , U−1
j+1,ω : Vsj+1 −→ Vs∗j+1

that belongs to G , such that,

(3.16) Hj ◦Fj+1 = N+
j +R+

j , |R+
j | 6 δ

`εj/2
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and

(3.17)



|Ej+1|∗j+1<· εjs
−λ−τ
j , |∇θEj+1|j+1<· εjs−λ−νj ,

|∇ωEj+1|j+1<· εjs−λ−τ−νj ,

|Fj+1|∗j+1<· εjs
−λ−ν
j , |∇θFj+1|j+1<· εjs−λ−ν−1

j ,

|∇ωFj+1|j+1<· εjs−λ−2ν
j ,

|Gj+1|∗j+1<· εjs
−ν
j , |∇θGj+1|j+1<· εjs−ν−1

j , |∇ωGj+1|j+1<· εjs−2ν
j ,

|ϕj+1 − Id|j+1<· εjs−λj , |∇ϕj+1 − Id|j+1<· εjs−λ−νj .

3.3. Iteration and convergence. — We will now combine Proposition 3.1 and Propo-
sition 3.3 into the following iterative Proposition which will be the main ingredient
in the proof of Theorem B. Yet we still have to choose u0 in Proposition 3.1 and s0

in Proposition 3.3. We set

(3.18) u0 = δ−1s0, s`0 =· ε,

where we recall that |P |` 6 ε in (∗∗), and the above implicit constant is nothing but
the implicit constant that appears in Proposition 3.1.

Proposition 3.4. — Let H be as in (∗∗) of class C` with ` > 2ν, and consider the
sequence Pj of real-analytic Hamiltonians associated to P given by Proposition 3.1.
Then for ε sufficiently small, the following holds true. For each j ∈ N, there exists a
normal form Nj, with N0 = N , and a transformation

(3.19) F j+1 = (Φj+1, ϕj+1) = (U j+1, V j+1, ϕj+1) : Dj+1 −→ Uj+1, F 0 = Id

that belongs to G , such that

(3.20) (N + Pj) ◦F j+1 = Nj+1 +Rj+1, |Rj+1|j+1 6 s
`
j+1/2.

Moreover, we have F j+1 = F j ◦Fj+1 with
Fj+1 = (Φj+1, ϕj+1) = (Uj+1, Vj+1, ϕj+1) : D∗j+1 −→ Dj+1,

U−1
j+1,ω : Vsj+1

−→ Vs∗j+1

(3.21)

with the following estimates

(3.22)


|Ej+1|∗j+1<· s

`−λ−τ
j , |∇θEj+1|j+1<· s`−λ−νj , |∇ωEj+1|j+1<· s`−λ−τ−νj ,

|Fj+1|∗j+1<· s
`−λ−ν
j , |∇θFj+1|j+1<· s`−λ−ν−1

j , |∇ωFj+1|j+1<· s`−λ−2ν
j ,

|Gj+1|∗j+1<· s
`−ν
j , |∇θGj+1|j+1<· s`−ν−1

j , |∇ωGj+1|j+1<· s`−2ν
j ,

|ϕj+1 − Id|j+1<· s`−λj , |∇ϕj+1 − Id|j+1<· s`−λ−νj .

Proof. — The proof is an induction on j ∈ N, and we start with the case j = 0. The
Hamiltonian N +P0 = N0 +P0 is defined on U0, and since u0 > s0 = max{s0, r0, h0},
the latter contains D0, and hence

|P0|0 = ε0<· ε.

It follows from the definition of s0 in (3.18) that

|P0|0 = ε0 6 s
`
0.
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To apply Proposition 3.3 with R0 = P0, it is sufficient to have

s`0<· sλ+ν
0

and this is satisfied for ε, and thus s0, sufficiently small, as ` > λ+ν. We can therefore
apply Proposition 3.3 to find F1 and define F 1 = F1 to have

(N + P0) ◦F 1 = N+
0 + P+

0 .

We set N1 = N+
0 and R1 = P+

0 and we get from (3.16) with j = 0 that

|R1|1 6 δ`s`0/2 = s`1/2.

We have that F 1 maps D∗1 , and thus D1, into D0; but since u1 = s0 we have in
fact that D0 is contained in U1, and thus F 1 maps D1 into U1. The estimates (3.22)
follows directly from the estimates (3.17) with j = 0, taking into account that ε0 6 s`0.

Now assume that for some j > 1 we have constructed F j , Nj and Rj which
satisfies (3.20). We need to construct Fj+1 as in (3.21) satisfying (3.22), such that
F j+1 = F j ◦Fj+1 is as in (3.19) and satisfies (3.20). Let us write

N + Pj = N + Pj−1 + (Pj − Pj−1)

so that
(N + Pj) ◦F j = Nj +Rj + (Pj − Pj−1) ◦F j .

By our inductive assumption, F j maps Dj into Uj and hence we have from Propo-
sition 3.1

|(Pj − Pj−1) ◦F j |j 6 |Pj − Pj−1|Uj
<·u`j−1ε<· δ−2`s`jε 6 s

`
j/2

for ε small enough. Observe also that by the induction hypothesis

|Rj |j 6 s`j/2

so if we set
R̂j = Rj + (Pj − Pj−1) ◦F j

we arrive at
(N + Pj) ◦F j = Nj + R̂j , |R̂j |j = εj 6 s

`
j .

To apply Proposition 3.3 to this Hamiltonian, it is sufficient to have

s`j <· sλ+ν
j

which is satisfied since this is the case for j = 0. Proposition 3.3 applies and we
find Fj+1 as in (3.21), and the estimates (3.22) follows from (3.17) and the fact that
εj 6 s`j . We may set Nj+1 = N+

j , Rj+1 = R̂+
j and again we get from (3.20)

|Rj+1|j+1 6 δ
`s`j/2 = s`j+1/2.

To complete the induction, the only thing that remains to be checked is (3.19), that is,
we need to show that F j+1 maps Dj+1 into Uj+1. To prove this, we proceed as
in [Pop04] and first observe that for all 0 6 i 6 j, letting

Wi = diag(s−1
i Id, r−1

i Id, h−1
i Id),
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we have from (3.22) that

(3.23) |Wi(∇Fi+1 − Id)W−1
i |i+1 6 Cs

`−λ−ν
i .

for a large constant C > 0. We also have

(3.24) |WiW
−1
i+1| = max{δ, δλ, δν} = δ

and thus, for ε small enough, we obtain

|W0∇F j+1W−1
j |j+1 = |W0∇(F1 ◦ · ◦Fj+1)W−1

j |

6
j−1∏
i=0

(
|WiW

−1
i+1| |Wi∇Fi+1W

−1
i |i+1

)
|Wj∇Fj+1W

−1
j |j+1

6 δj
+∞∏
i=0

(1 + Cs`−λ−νi ) 6 2δj

(3.25)

for ε (and thus s0) small enough. Now let us decompose z = (θ, I, ω) = x+ iy into its
real and imaginary part, and write

(3.26) F j+1(x+ iy) = F j+1(x) +W−1
0 Tj+1(x, y)Wjy,

where

Tj+1(x, y) = i

∫ 1

0

W0∇F j+1(x+ tiy)W−1
j dt.

The important observation is that F j+1 is real-analytic, thus F j+1(x) is real and it is
sufficient to prove that the second term in (3.26) is bounded by uj+1 = u0δ

j+1 = s0δ
j

when z ∈ Dj+1. But for z ∈ Dj+1, we have |Wjy| 6 s0 and since |W−1
0 | = s0 6 2−1,

we can deduce from (3.25) that

|W−1
0 Tj+1(x, y)Wjy| 6 2−12δjs0 = s0δ

j = uj+1,

which is what we needed to prove. �

The last thing we need for the proof of Theorem B is the following converse ap-
proximation result, which we state in a way adapted to our need.

Proposition 3.5. — Let F j be a sequence of real-analytic functions defined on V̂j =

Vsj , and which satisfies

F 0 = 0, |F j+1 − F j |V̂j+1
<· sαj , j ∈ N

for some α > 0. Then for any 0 < β 6 α which is not an integer, F j converges to
F ∈ Cβ(Tn) and we have

|F |β <· (θ(1− θ))−1sα−β0 , θ = β − [β].

We point out that using the estimates (3.23) and (3.24) one could proceed as
in [Pö01] and easily obtain, on appropriate domains, estimates such as

|W0(F j+1 −F j)|<· |Wj(Fj+1 − Id)|<· s`−λ−νj .
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However, in view of Proposition 3.5, such estimates are not sufficient for our purpose;
one would need the stronger estimates

(3.27) |Wj(F
j+1 −F j)|<· |Wj(Fj+1 − Id)|<· s`−λ−νj .

which are non-trivial to obtain. The point is that the simple argument from [Pö01]
using these weight matrices do not take fully into account the structure of the transfor-
mation (estimating the size of weight matrices as in (3.24) is actually very pessimistic),
and the latter will be important for us in the proof of the convergence. This is why
we decomposed F = (Φ, ϕ) = (E,F,G, ϕ), and we will now proceed as in [BF19] to
prove the stronger estimates (3.27), or at least the relevant part of it.

Proof of Theorem B. — Let us denote by

F j+1 = (Φj+1, ϕj+1) = (U j+1, V j+1, ϕj+1) = (Ej+1, F j+1, Gj+1, ϕj+1)

and
Γj+1 = Gj+1 ◦ (U j+1)−1.

We claim that the estimates (3.22) imply that

(3.28)


|ϕj+1 − ϕj |j+1<· s`−λj , |Ej+1 − Ej |j+1<· s`−λ−τj ,

|F j+1 − F j |j+1<· s`−λ−νj ,

|Gj+1 −Gj |j+1<· s`−λ−τj , |Γj+1 − Γj |j+1<· s`−νj .

Let us first assume (3.28), and show how to conclude the proof. Since the open complex
domains Vhj shrink to the closed set Ω1,τ , the first inequality of (3.28) show that ϕj

converges to a uniformly continuous map ϕ : Ω1,τ → Ω̃. Then since ` − λ − τ > 1,
it follows from the second and fourth inequalities of (3.28) and Proposition 3.5 that
for a fixed ω ∈ Ω1,τ , Ejω and Gjω converge to C1 (in fact Cr, for any real non-integer r
such that 1 < r < ` − λ − τ , but so in particular C1) maps Eω : Tn → B1 and
Gω : Tn → B1, such that Uω = Id + Eω is a diffeomorphism of Tn, and

(3.29) |Uω − Id|1 = |Eω|1<· s`−λ−ν0 <· ε(`−λ−ν)/`, |Gω|1<· s`−λ−ν0 <· ε(`−λ−ν)/`.

Similarly, since ` − ν > ν = τ + 1, the last inequality of (3.28) and Proposition 3.5
imply that for a fixed ω ∈ Ω1,τ , Γjω converges to a Cτ+1 map Γω : Tn → B1 such that

(3.30) |Γω|τ+1<· s`−2ν
0 <· ε(`−2ν)/`.

We can eventually define

Ψω = (Uω, Gω) : Tn −→ Tn ×B1

which is the limit of Ψj+1
ω = (U j+1

ω , Gj+1
ω ). On account of (3.20) we have

(3.31) |Hj ◦F j+1 −Nj |j+1 6 s
`
j+1

where Hj = N + Pj , which, evaluated at I = 0, implies in particular that

(Hj)ϕj+1(ω) ◦Ψj+1
ω
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converges, as j goes to infinity, to a constant. By Proposition 3.1, Pj converges to P
in the C1 topology, so in particular Hj converges uniformly to H and thus

Ψω(Tn) = {(θ,Γω(θ)) | θ ∈ Tn}

is an embedded Lagrangian torus invariant by the flow of Hϕ(ω). Moreover, the in-
equality (3.31), together with Cauchy inequality (using ` > λ) and the symplectic
character of Φj+1

ω , implies that

(∇Ψj+1
ω )−1X(Hj)ϕj+1(ω)

◦Ψj+1
ω

converges, as j goes to infinity, to the vector ω. Again, the C1 convergence of Pj to P
implies the uniform convergence of XHj to XH , and the latter means that at the limit
we have

XHϕ(ω)
◦Ψω = ∇Ψω · ω.

With the estimates (3.29) and (3.30), this proves the first part of the statement.
To prove the second part, we just observe that (3.28) together with a Cauchy

estimate gives
|ϕj+1 − ϕj |j+1<· s`−λ−νj ·< 1.

It follows that ϕ is a limit of uniform Lipschitz functions, and so it is Lipschitz with

Lip(ϕ− Id)<· s`−λ−ν0 <· ε(`−λ−ν)/`.

Similarly, from (3.28) and a Cauchy estimate we have

|∇ωΓj+1 −∇ωΓj |∗j+1<· s`−2ν
j ·< 1

and thus Γ is Lipschitz with respect to ω with

Lip(Γ)<· s`−2ν
0 <· ε(`−2ν)/`.

This gives the second part of Theorem B, and now it remains to prove the claim (3.28).
To simplify the notations, we will not indicate the domain on which the supremum

norms are taken, as this should be clear from the context. Let us denote

∆j+1(θ, ω) = (Uj+1(θ, ω), ϕj+1(ω)) = (θ + Ej+1(θ, ω), ϕj+1(ω))

and its differential

∇∆j+1 =

(
∇θUj+1 ∇ωUj+1

0 ∇ϕj+1

)
=

(
Id +∇θEj+1 ∇ωEj+1

0 ∇ϕj+1

)
.

The estimates (3.22) give all the required estimates on ∆j+1 and ∇∆j+1. Recalling
that

F j+1 = (Ej+1, F j+1, Gj+1, ϕj+1)

is of the form F j+1 = F j ◦Fj+1, with

Fj+1 = (Φj+1, ϕj+1) = (Ej+1, Fj+1, Gj+1, ϕj+1)
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we have the following inductive expressions:

(3.32)


ϕj+1 = ϕj ◦ ϕj+1,

Ej+1 = Ej+1 + Ej ◦∆j+1

F j+1 = (Id + F j ◦∆j+1).Fj+1 + F j ◦∆j+1

Gj+1 = (Id + F j ◦∆j+1).Gj+1 +Gj ◦∆j+1.

In the sequel, we shall make constant use of the estimates (3.22) and the inductive
expressions (3.32). Let us first prove the estimate for ϕj+1, which is the simplest as the
frequencies get transformed independently of the other variables. A straightforward
induction gives

|∇ϕj |<·
j∏
i=1

(1 + s`−λ−νi )<· 1

and together with

ϕj+1 − ϕj =

(∫ 1

0

∇ϕj ◦ (tϕj+1 + (1− t)Id)dt

)
· (ϕj+1 − Id)

one finds
|ϕj+1 − ϕj |<· |∇ϕj | |ϕj+1 − Id|<· s`−λj

which is the first estimate of (3.28).
The estimate for Ej+1 is slightly more complicated. Let us introduce

∆̂j+1(θ, ω) = (θ, ϕj+1(ω))

and we split

(3.33) Ej+1 − Ej = (Ej+1 − Ej ◦ ∆̂j+1) + (Ej ◦ ∆̂j+1 − Ej).

The first summand in (3.33) read

Ej+1 − Ej ◦ ∆̂j+1 = Ej+1 + Ej ◦∆j+1 − Ej ◦ ∆̂j+1

Using the chain rule, we compute

∇θEj+1 = ∇θEj+1 + (∇θEj ◦∆j+1).(Id +∇θEj+1)

and by induction one arrives at the estimate

(3.34) |∇θEj |<·
j∑
i=1

s`−λ−νi ·< 1

and therefore

|Ej ◦∆j+1 − Ej ◦ ∆̂j+1|<· |∇θEj ||Ej+1| ·<s`−λ−τj

and hence

(3.35) |Ej+1 − Ej ◦ ∆̂j+1|<· s`−λ−τj .

For the second summand of (3.33), again by the chain rule we have

∇ωEj+1 = ∇ωEj+1 + (∇θEj ◦∆j+1).∇ωEj+1 + (∇ωEj ◦∆j+1).∇ϕj+1.
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and by induction, using also (3.34), we arrive at

|∇ωEj |<·
j∑
i=1

s`−λ−τ−νi ·<s−τj

and hence

(3.36) |Ej ◦ ∆̂j+1 − Ej |<· |∇ωEj | |ϕj+1 − Id| ·<s−τj s`−λj ·<s`−λ−τj .

From (3.33), (3.35) and (3.36) one arrives at

|Ej+1 − Ej |<· s`−λ−τj

which is the second estimate of (3.28).
The estimate for F j+1 is, again, similar to Ej+1 but a bit more complicated. We use

a similar splitting

(3.37) F j+1 − F j = (F j+1 − F j ◦ ∆̂j+1) + (F j ◦ ∆̂j+1 − Fj)

and start with the first summand

(3.38) F j+1 − F j ◦ ∆̂j+1 = (Id + F j ◦∆j+1)Fj+1 + F j ◦∆j+1 − F j ◦ ∆̂j+1.

To estimate this term, we first prove, by a slightly more complicated induction us-
ing (3.32) that

(3.39) |F j |<·
j∑
i=1

s`−λ−νi ·< 1.

Then one computes,

∇θF j+1 = ∇θFj+1.(Id + F j ◦∆j+1) + (∇θF j ◦∆j+1).(Id +∇θEj+1).(Id + Fj+1)

and by induction using (3.39), we can now claim that

|∇θF j |<·
j∑
i=1

s`−λ−ν−1
i ·<s−1

j .

Proceeding as before, this leads to

|F j ◦∆j+1 − F j ◦ ∆̂j+1|<· |∇θF j | |Ej+1|<· s−1
j s`−λ−τj ·<s`−λ−νj

and hence

(3.40) |F j+1 − F j ◦ ∆̂j+1|<· s`−λ−νj .

For the second summand, a similar but more involved computation and induction
leads to

|∇ωF j |<·
j∑
i=1

s`−λ−2ν
i ·<s−νj

and hence

(3.41) |F j ◦ ∆̂j+1 − F j |<· |∇ωF j | |ϕj+1 − Id| ·<s−νj s`−λj ·<s`−λ−νj .

From (3.37), (3.40) and (3.41) we obtain

|F j+1 − F j |<· s`−λ−νj ,
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which is the third estimate of (3.28). The estimate for Gj+1 follows from the exact
same argument as the one used for F j+1: one proves by induction that

|∇θGj | ·<s`−ν−1
0 ·< 1, |∇ωGj | ·<s`−2ν

0 ·< 1

which leads to

|Gj+1 −Gj ◦ ∆̂j+1|<· s`−λ−τj , |Gj ◦ ∆̂j+1 −Gj | ·<s`−λj

and implies the fourth estimate of (3.28). To prove the last estimate, observe that the
inductive expression for Ej+1 gives

U j+1 = U j ◦∆j+1

and with the inductive expression for Gj+1 this leads to

Gj+1 ◦ (U j+1)−1 = (Id + F j ◦∆j+1).Gj+1 ◦ (U j+1)−1 +Gj ◦ (U j)−1

and therefore
Γj+1 − Γj = (Id + F j ◦∆j+1).Gj+1 ◦ (U j+1)−1.

Since the image of (Uj+1)−1 is contained in D∗j+1, the same holds true for (U j+1)−1

and therefore
|Gj+1 ◦ (U j+1)−1| 6 |Gj+1|∗<· s`−νj ,

which gives
|Γj+1 − Γj |<· s`−νj .

This concludes the proof of the claim, and hence finishes the proof of the theorem. �
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