Dans cet article nous montrons, pour un groupe algébrique réductif connexe satisfaisant à une hypothèse technique mineure, que la catégorie de Satake de (avec coefficients dans un corps fini, une extension finie des nombres -adiques, ou l’anneau des entiers d’un tel corps) peut se décrire en termes de faisceaux pervers d’Iwahori-Whittaker sur la grassmannienne affine. Nous en déduisons la démonstration d’une conjecture de Juteau-Mautner-Williamson décrivant les objets basculants dans la catégorie de Satake, et également une nouvelle preuve du fait qu’un produit tensoriel de représentations basculantes est basculant.
In this paper we prove, for a connected reductive algebraic group satisfying a mild technical assumption, that the Satake category of (with coefficients in a finite field, a finite extension of , or the ring of integers of such a field) can be described via Iwahori-Whittaker perverse sheaves on the affine Grassmannian. As applications, we confirm a conjecture of Juteau-Mautner-Williamson describing the tilting objects in the Satake category, and give a new proof of the property that a tensor product of tilting modules is tilting.
Accepté le :
Publié le :
DOI : 10.5802/jep.104
Keywords: Affine Grassmannian, perverse sheaves, geometric Satake equivalence, tilting modules, parity sheaves
Mot clés : Grassmannienne affine, faisceaux pervers, équivalence de Satake géométrique, modules basculants, faisceaux à parité
@article{JEP_2019__6__707_0, author = {Bezrukavnikov, Roman and Gaitsgory, Dennis and Mirkovi\'c, Ivan and Riche, Simon and Rider, Laura}, title = {An {Iwahori-Whittaker} model for the {Satake} category}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {707--735}, publisher = {Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.104}, zbl = {07114040}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.104/} }
TY - JOUR AU - Bezrukavnikov, Roman AU - Gaitsgory, Dennis AU - Mirković, Ivan AU - Riche, Simon AU - Rider, Laura TI - An Iwahori-Whittaker model for the Satake category JO - Journal de l’École polytechnique - Mathématiques PY - 2019 SP - 707 EP - 735 VL - 6 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.104/ DO - 10.5802/jep.104 LA - en ID - JEP_2019__6__707_0 ER -
%0 Journal Article %A Bezrukavnikov, Roman %A Gaitsgory, Dennis %A Mirković, Ivan %A Riche, Simon %A Rider, Laura %T An Iwahori-Whittaker model for the Satake category %J Journal de l’École polytechnique - Mathématiques %D 2019 %P 707-735 %V 6 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.104/ %R 10.5802/jep.104 %G en %F JEP_2019__6__707_0
Bezrukavnikov, Roman; Gaitsgory, Dennis; Mirković, Ivan; Riche, Simon; Rider, Laura. An Iwahori-Whittaker model for the Satake category. Journal de l’École polytechnique - Mathématiques, Tome 6 (2019), pp. 707-735. doi : 10.5802/jep.104. http://www.numdam.org/articles/10.5802/jep.104/
[AB09] Perverse sheaves on affine flags and Langlands dual group, Israel J. Math., Volume 170 (2009), pp. 135-183 (with an appendix by R. Bezrukavnikov and I. Mirković) | DOI | MR | Zbl
[ABB + 05] Modules over the small quantum group and semi-infinite flag manifold, Transform. Groups, Volume 10 (2005) no. 3-4, pp. 279-362 | DOI | MR | Zbl
[ACR18] The parabolic exotic t-structure, Épijournal de Géom. Alg., Volume 2 (2018), 8, 31 pages | MR | Zbl
[AG] Asymptotics of geometric Whittaker coefficients (available at http://www.math.harvard.edu/~gaitsgde/GL/WhitAsympt.pdf)
[AMRW19] Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc., Volume 32 (2019) no. 1, pp. 261-310 | DOI | MR | Zbl
[And18] The Steinberg linkage class for a reductive algebraic group, Ark. Mat., Volume 56 (2018) no. 2, pp. 229-241 | DOI | MR | Zbl
[AR15] Parity sheaves on the affine Grassmannian and the Mirković-Vilonen conjecture, Acta Math., Volume 215 (2015) no. 2, pp. 183-216 | DOI | Zbl
[AR16] Modular perverse sheaves on flag varieties I: tilting and parity sheaves, Ann. Sci. École Norm. Sup. (4), Volume 49 (2016) no. 2, pp. 325-370 (With a joint appendix with G. Williamson) | DOI | MR | Zbl
[AR18a] Reductive groups, the loop Grassmannian, and the Springer resolution, Invent. Math., Volume 214 (2018) no. 1, pp. 289-436 | DOI | MR | Zbl
[AR18b] Dualité de Koszul formelle et théorie des représentations des groupes algébriques réductifs en caractéristique positive, 2018 | arXiv
[BBDG82] Faisceaux pervers, Analyse et topologie sur les espaces singuliers (Astérisque), Volume 100, Société Mathématique de France, Paris, 1982 (2nd ed.: 2018) | MR | Zbl
[BBM04] Some results about geometric Whittaker model, Adv. Math., Volume 186 (2004) no. 1, pp. 143-152 | DOI | MR | Zbl
[BD] Quantization of Hitchin’s integrable system and Hecke eigensheaves (unpublished preprint available at http://www.math.uchicago.edu/~mitya/langlands.html)
[Bez16] On two geometric realizations of an affine Hecke algebra, Publ. Math. Inst. Hautes Études Sci., Volume 123 (2016), pp. 1-67 | DOI | MR | Zbl
[BGS96] Koszul duality patterns in representation theory, J. Amer. Math. Soc., Volume 9 (1996) no. 2, pp. 473-527 | DOI | MR | Zbl
[BL94] Equivariant sheaves and functors, Lect. Notes in Math., 1578, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[BR18] Notes on the geometric Satake equivalence, Relative aspects in representation theory, Langlands functoriality and automorphic forms (CIRM Jean-Morlet Chair, Spring 2016) (Heiermann, V.; Prasad, D., eds.) (Lect. Notes in Math.), Volume 2221, Springer, 2018, pp. 1-134 | DOI
[BR18] A topological approach to Soergel theory, 2018 | arXiv
[BY13] On Koszul duality for Kac-Moody groups, Represent. Theory, Volume 17 (2013), pp. 1-98 | DOI | MR | Zbl
[CPS88] Finite-dimensional algebras and highest weight categories, J. reine angew. Math., Volume 391 (1988), pp. 85-99 | MR | Zbl
[Fal03] Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS), Volume 5 (2003) no. 1, pp. 41-68 | DOI | MR | Zbl
[FG06] Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory (Progress in Math.), Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69-260 | DOI | MR | Zbl
[FGKV98] Geometric realization of Whittaker functions and the Langlands conjecture, J. Amer. Math. Soc., Volume 11 (1998) no. 2, pp. 451-484 | DOI | MR | Zbl
[FGV01] Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math. (2), Volume 153 (2001) no. 3, pp. 699-748 | DOI | MR | Zbl
[FK88] Étale cohomology and the Weil conjecture, Ergeb. Math. Grenzgeb. (3), 13, Springer-Verlag, Berlin, 1988 | DOI | Zbl
[FM99] Semi-infinite flags. I. Case of global curve , Differential topology, infinite-dimensional Lie algebras, and applications (Amer. Math. Soc. Transl. Ser. 2), Volume 194, American Mathematical Society, Providence, RI, 1999, pp. 81-112 | DOI | MR | Zbl
[Gai01] Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., Volume 144 (2001) no. 2, pp. 253-280 | DOI | MR | Zbl
[Gai18] The local and global versions of the Whittaker category, 2018 | arXiv
[Jan03] Representations of algebraic groups, Math. Surveys and Monographs, 107, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[JMW14] Parity sheaves, J. Amer. Math. Soc., Volume 27 (2014) no. 4, pp. 1169-1212 | DOI | MR | Zbl
[JMW16] Parity sheaves and tilting modules, Ann. Sci. École Norm. Sup. (4), Volume 49 (2016) no. 2, pp. 257-275 | DOI | MR | Zbl
[Jut08] Modular representations of reductive groups and geometry of affine Grassmannians, 2008 | arXiv
[Lus83] Singularities, character formulas, and a -analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101, Société Mathématique de France, Paris, 1983, pp. 208-229 | MR | Zbl
[Mat90] Filtrations of -modules, Ann. Sci. École Norm. Sup. (4), Volume 23 (1990) no. 4, pp. 625-644 | DOI | MR | Zbl
[MR18] Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković-Vilonen conjecture, J. Eur. Math. Soc. (JEMS), Volume 20 (2018) no. 9, pp. 2259-2332 | DOI | Zbl
[MV07] Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Volume 166 (2007) no. 1, pp. 95-143 Erratum: Ibid., 188 (2018), no. 3, p. 1017–1018 | DOI | MR
[Nad05] Perverse sheaves on real loop Grassmannians, Invent. Math., Volume 159 (2005) no. 1, pp. 1-73 | DOI | MR | Zbl
[NP01] Résolutions de Demazure affines et formule de Casselman-Shalika géométrique, J. Algebraic Geom., Volume 10 (2001) no. 3, pp. 515-547 | Zbl
[Ras16] -algebras and Whittaker categories, 2016 | arXiv
[Ric16] Geometric representation theory in positive characteristic, habilitation thesis, Univ. Clermont-Ferrand (2016) | TEL
[RSW14] Modular Koszul duality, Compositio Math., Volume 150 (2014) no. 2, pp. 273-332 | DOI | MR | Zbl
[RW18] Tilting modules and the -canonical basis, Astérisque, 397, Société Mathématique de France, Paris, 2018 | Zbl
[Spr82] Quelques applications de la cohomologie d’intersection, Séminaire N. Bourbaki, Vol. 1981/82 (Astérisque), Volume 92, Société Mathématique de France, Paris, 1982, pp. 249-273 (Exp. no. 589) | MR | Zbl
[Wan15] A new Fourier transform, Math. Res. Lett., Volume 22 (2015) no. 5, pp. 1541-1562 | DOI | MR | Zbl
Cité par Sources :