An Iwahori-Whittaker model for the Satake category
[Un modèle d’Iwahori-Whittaker pour la catégorie de Satake]
Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 707-735.

Dans cet article nous montrons, pour G un groupe algébrique réductif connexe satisfaisant à une hypothèse technique mineure, que la catégorie de Satake de G (avec coefficients dans un corps fini, une extension finie des nombres p-adiques, ou l’anneau des entiers d’un tel corps) peut se décrire en termes de faisceaux pervers d’Iwahori-Whittaker sur la grassmannienne affine. Nous en déduisons la démonstration d’une conjecture de Juteau-Mautner-Williamson décrivant les objets basculants dans la catégorie de Satake, et également une nouvelle preuve du fait qu’un produit tensoriel de représentations basculantes est basculant.

In this paper we prove, for G a connected reductive algebraic group satisfying a mild technical assumption, that the Satake category of G (with coefficients in a finite field, a finite extension of , or the ring of integers of such a field) can be described via Iwahori-Whittaker perverse sheaves on the affine Grassmannian. As applications, we confirm a conjecture of Juteau-Mautner-Williamson describing the tilting objects in the Satake category, and give a new proof of the property that a tensor product of tilting modules is tilting.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.104
Classification : 20G05
Keywords: Affine Grassmannian, perverse sheaves, geometric Satake equivalence, tilting modules, parity sheaves
Mot clés : Grassmannienne affine, faisceaux pervers, équivalence de Satake géométrique, modules basculants, faisceaux à parité
Bezrukavnikov, Roman 1 ; Gaitsgory, Dennis 2 ; Mirković, Ivan 3 ; Riche, Simon 4 ; Rider, Laura 5

1 Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, USA
2 Harvard University 1 Oxford St, Cambridge, MA 02138, USA
3 University of Massachusetts Amherst, MA, USA.
4 Université Clermont Auvergne, CNRS, LMBP F-63000 Clermont-Ferrand, France
5 Department of Mathematics, University of Georgia Athens Georgia 30602, USA
@article{JEP_2019__6__707_0,
     author = {Bezrukavnikov, Roman and Gaitsgory, Dennis and Mirkovi\'c, Ivan and Riche, Simon and Rider, Laura},
     title = {An {Iwahori-Whittaker} model for the {Satake} category},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {707--735},
     publisher = {Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.104},
     zbl = {07114040},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.104/}
}
TY  - JOUR
AU  - Bezrukavnikov, Roman
AU  - Gaitsgory, Dennis
AU  - Mirković, Ivan
AU  - Riche, Simon
AU  - Rider, Laura
TI  - An Iwahori-Whittaker model for the Satake category
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 707
EP  - 735
VL  - 6
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.104/
DO  - 10.5802/jep.104
LA  - en
ID  - JEP_2019__6__707_0
ER  - 
%0 Journal Article
%A Bezrukavnikov, Roman
%A Gaitsgory, Dennis
%A Mirković, Ivan
%A Riche, Simon
%A Rider, Laura
%T An Iwahori-Whittaker model for the Satake category
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 707-735
%V 6
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.104/
%R 10.5802/jep.104
%G en
%F JEP_2019__6__707_0
Bezrukavnikov, Roman; Gaitsgory, Dennis; Mirković, Ivan; Riche, Simon; Rider, Laura. An Iwahori-Whittaker model for the Satake category. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 707-735. doi : 10.5802/jep.104. http://www.numdam.org/articles/10.5802/jep.104/

[AB09] Arkhipov, Sergey; Bezrukavnikov, Roman Perverse sheaves on affine flags and Langlands dual group, Israel J. Math., Volume 170 (2009), pp. 135-183 (with an appendix by R. Bezrukavnikov and I. Mirković) | DOI | MR | Zbl

[ABB + 05] Arkhipov, S.; Braverman, A.; Bezrukavnikov, R.; Gaitsgory, Dennis; Mirković, I. Modules over the small quantum group and semi-infinite flag manifold, Transform. Groups, Volume 10 (2005) no. 3-4, pp. 279-362 | DOI | MR | Zbl

[ACR18] Achar, Pramod N.; Cooney, Nicholas; Riche, Simon The parabolic exotic t-structure, Épijournal de Géom. Alg., Volume 2 (2018), 8, 31 pages | MR | Zbl

[AG] Arinkin, D.; Gaitsgory, Dennis Asymptotics of geometric Whittaker coefficients (available at http://www.math.harvard.edu/~gaitsgde/GL/WhitAsympt.pdf)

[AMRW19] Achar, Pramod N.; Makisumi, Shotaro; Riche, Simon; Williamson, Geordie Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc., Volume 32 (2019) no. 1, pp. 261-310 | DOI | MR | Zbl

[And18] Andersen, Henning Haahr The Steinberg linkage class for a reductive algebraic group, Ark. Mat., Volume 56 (2018) no. 2, pp. 229-241 | DOI | MR | Zbl

[AR15] Achar, Pramod N.; Rider, Laura Parity sheaves on the affine Grassmannian and the Mirković-Vilonen conjecture, Acta Math., Volume 215 (2015) no. 2, pp. 183-216 | DOI | Zbl

[AR16] Achar, Pramod N.; Riche, Simon Modular perverse sheaves on flag varieties I: tilting and parity sheaves, Ann. Sci. École Norm. Sup. (4), Volume 49 (2016) no. 2, pp. 325-370 (With a joint appendix with G. Williamson) | DOI | MR | Zbl

[AR18a] Achar, Pramod N.; Riche, Simon Reductive groups, the loop Grassmannian, and the Springer resolution, Invent. Math., Volume 214 (2018) no. 1, pp. 289-436 | DOI | MR | Zbl

[AR18b] Achar, Pramod N.; Riche, Simon Dualité de Koszul formelle et théorie des représentations des groupes algébriques réductifs en caractéristique positive, 2018 | arXiv

[BBDG82] Beĭlinson, Alexander; Bernstein, Joseph; Deligne, Pierre; Gabber, Ofer Faisceaux pervers, Analyse et topologie sur les espaces singuliers (Astérisque), Volume 100, Société Mathématique de France, Paris, 1982 (2nd ed.: 2018) | MR | Zbl

[BBM04] Bezrukavnikov, Roman; Braverman, Alexander; Mirkovic, Ivan Some results about geometric Whittaker model, Adv. Math., Volume 186 (2004) no. 1, pp. 143-152 | DOI | MR | Zbl

[BD] Beĭlinson, Alexander; Drinfeld, Vladimir Quantization of Hitchin’s integrable system and Hecke eigensheaves (unpublished preprint available at http://www.math.uchicago.edu/~mitya/langlands.html)

[Bez16] Bezrukavnikov, Roman On two geometric realizations of an affine Hecke algebra, Publ. Math. Inst. Hautes Études Sci., Volume 123 (2016), pp. 1-67 | DOI | MR | Zbl

[BGS96] Beĭlinson, Alexander; Ginzburg, Victor; Soergel, Wolfgang Koszul duality patterns in representation theory, J. Amer. Math. Soc., Volume 9 (1996) no. 2, pp. 473-527 | DOI | MR | Zbl

[BL94] Bernstein, Joseph; Lunts, Valery Equivariant sheaves and functors, Lect. Notes in Math., 1578, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[BR18] Baumann, Pierre; Riche, Simon Notes on the geometric Satake equivalence, Relative aspects in representation theory, Langlands functoriality and automorphic forms (CIRM Jean-Morlet Chair, Spring 2016) (Heiermann, V.; Prasad, D., eds.) (Lect. Notes in Math.), Volume 2221, Springer, 2018, pp. 1-134 | DOI

[BR18] Bezrukavnikov, Roman; Riche, Simon A topological approach to Soergel theory, 2018 | arXiv

[BY13] Bezrukavnikov, Roman; Yun, Zhiwei On Koszul duality for Kac-Moody groups, Represent. Theory, Volume 17 (2013), pp. 1-98 | DOI | MR | Zbl

[CPS88] Cline, E.; Parshall, B.; Scott, L. Finite-dimensional algebras and highest weight categories, J. reine angew. Math., Volume 391 (1988), pp. 85-99 | MR | Zbl

[Fal03] Faltings, Gerd Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS), Volume 5 (2003) no. 1, pp. 41-68 | DOI | MR | Zbl

[FG06] Frenkel, Edward; Gaitsgory, Dennis Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory (Progress in Math.), Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69-260 | DOI | MR | Zbl

[FGKV98] Frenkel, Edward; Gaitsgory, Dennis; Kazhdan, D.; Vilonen, Kari Geometric realization of Whittaker functions and the Langlands conjecture, J. Amer. Math. Soc., Volume 11 (1998) no. 2, pp. 451-484 | DOI | MR | Zbl

[FGV01] Frenkel, Edward; Gaitsgory, Dennis; Vilonen, Kari Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math. (2), Volume 153 (2001) no. 3, pp. 699-748 | DOI | MR | Zbl

[FK88] Freitag, Eberhard; Kiehl, Reinhardt Étale cohomology and the Weil conjecture, Ergeb. Math. Grenzgeb. (3), 13, Springer-Verlag, Berlin, 1988 | DOI | Zbl

[FM99] Finkelberg, Michael; Mirković, Ivan Semi-infinite flags. I. Case of global curve 1 , Differential topology, infinite-dimensional Lie algebras, and applications (Amer. Math. Soc. Transl. Ser. 2), Volume 194, American Mathematical Society, Providence, RI, 1999, pp. 81-112 | DOI | MR | Zbl

[Gai01] Gaitsgory, Dennis Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., Volume 144 (2001) no. 2, pp. 253-280 | DOI | MR | Zbl

[Gai18] Gaitsgory, Dennis The local and global versions of the Whittaker category, 2018 | arXiv

[Jan03] Jantzen, Jens Carsten Representations of algebraic groups, Math. Surveys and Monographs, 107, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[JMW14] Juteau, Daniel; Mautner, Carl; Williamson, Geordie Parity sheaves, J. Amer. Math. Soc., Volume 27 (2014) no. 4, pp. 1169-1212 | DOI | MR | Zbl

[JMW16] Juteau, Daniel; Mautner, Carl; Williamson, Geordie Parity sheaves and tilting modules, Ann. Sci. École Norm. Sup. (4), Volume 49 (2016) no. 2, pp. 257-275 | DOI | MR | Zbl

[Jut08] Juteau, Daniel Modular representations of reductive groups and geometry of affine Grassmannians, 2008 | arXiv

[Lus83] Lusztig, George Singularities, character formulas, and a q-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101, Société Mathématique de France, Paris, 1983, pp. 208-229 | MR | Zbl

[Mat90] Mathieu, Olivier Filtrations of G-modules, Ann. Sci. École Norm. Sup. (4), Volume 23 (1990) no. 4, pp. 625-644 | DOI | MR | Zbl

[MR18] Mautner, Carl; Riche, Simon Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković-Vilonen conjecture, J. Eur. Math. Soc. (JEMS), Volume 20 (2018) no. 9, pp. 2259-2332 | DOI | Zbl

[MV07] Mirković, I.; Vilonen, Kari Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Volume 166 (2007) no. 1, pp. 95-143 Erratum: Ibid., 188 (2018), no. 3, p. 1017–1018 | DOI | MR

[Nad05] Nadler, David Perverse sheaves on real loop Grassmannians, Invent. Math., Volume 159 (2005) no. 1, pp. 1-73 | DOI | MR | Zbl

[NP01] Ngô, B. C.; Polo, P. Résolutions de Demazure affines et formule de Casselman-Shalika géométrique, J. Algebraic Geom., Volume 10 (2001) no. 3, pp. 515-547 | Zbl

[Ras16] Raskin, S. 𝒲-algebras and Whittaker categories, 2016 | arXiv

[Ric16] Riche, Simon Geometric representation theory in positive characteristic, habilitation thesis, Univ. Clermont-Ferrand (2016) | TEL

[RSW14] Riche, Simon; Soergel, Wolfgang; Williamson, Geordie Modular Koszul duality, Compositio Math., Volume 150 (2014) no. 2, pp. 273-332 | DOI | MR | Zbl

[RW18] Riche, Simon; Williamson, Geordie Tilting modules and the p-canonical basis, Astérisque, 397, Société Mathématique de France, Paris, 2018 | Zbl

[Spr82] Springer, T. A. Quelques applications de la cohomologie d’intersection, Séminaire N. Bourbaki, Vol. 1981/82 (Astérisque), Volume 92, Société Mathématique de France, Paris, 1982, pp. 249-273 (Exp. no. 589) | MR | Zbl

[Wan15] Wang, Jonathan A new Fourier transform, Math. Res. Lett., Volume 22 (2015) no. 5, pp. 1541-1562 | DOI | MR | Zbl

Cité par Sources :