Nous donnons une preuve de la classification des représentations automorphes discrètes de expliquée dans [Art04], ainsi que de la compatibilité avec les correspondances de Langlands locales pour et .
We prove the classification of discrete automorphic representations of explained in [Art04], as well as a compatibility between the local Langlands correspondences for and .
Accepté le :
Publié le :
DOI : 10.5802/jep.99
Keywords: Automorphic forms, trace formula, endoscopy, Arthur multiplicity formula, Siegel-Hilbert modular forms
Mot clés : Formes automorphes, formule des traces, endoscopie, formule de multiplicité d’Arthur, formes modulaires de Siegel-Hilbert
@article{JEP_2019__6__469_0, author = {Gee, Toby and Ta{\"\i}bi, Olivier}, title = {Arthur{\textquoteright}s multiplicity formula for ${\protect \bf GSp}_4$ and restriction to ${\protect \bf Sp}_4$}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {469--535}, publisher = {Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.99}, zbl = {07088011}, mrnumber = {3991897}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.99/} }
TY - JOUR AU - Gee, Toby AU - Taïbi, Olivier TI - Arthur’s multiplicity formula for ${\protect \bf GSp}_4$ and restriction to ${\protect \bf Sp}_4$ JO - Journal de l’École polytechnique - Mathématiques PY - 2019 SP - 469 EP - 535 VL - 6 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.99/ DO - 10.5802/jep.99 LA - en ID - JEP_2019__6__469_0 ER -
%0 Journal Article %A Gee, Toby %A Taïbi, Olivier %T Arthur’s multiplicity formula for ${\protect \bf GSp}_4$ and restriction to ${\protect \bf Sp}_4$ %J Journal de l’École polytechnique - Mathématiques %D 2019 %P 469-535 %V 6 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.99/ %R 10.5802/jep.99 %G en %F JEP_2019__6__469_0
Gee, Toby; Taïbi, Olivier. Arthur’s multiplicity formula for ${\protect \bf GSp}_4$ and restriction to ${\protect \bf Sp}_4$. Journal de l’École polytechnique - Mathématiques, Tome 6 (2019), pp. 469-535. doi : 10.5802/jep.99. http://www.numdam.org/articles/10.5802/jep.99/
[AMR18] Paquets d’Arthur des groupes classiques et unitaires, Ann. Fac. Sci. Toulouse Math. (6), Volume 27 (2018) no. 5, pp. 1023-1105 | DOI | MR | Zbl
[AP06] On certain multiplicity one theorems, Israel J. Math., Volume 153 (2006), pp. 221-245 | DOI | MR | Zbl
[Art01] A stable trace formula. II. Global descent, Invent. Math., Volume 143 (2001) no. 1, pp. 157-220 | DOI | MR | Zbl
[Art02] A stable trace formula. I. General expansions, J. Inst. Math. Jussieu, Volume 1 (2002) no. 2, pp. 175-277 | DOI | MR | Zbl
[Art03] A stable trace formula. III. Proof of the main theorems, Ann. of Math. (2), Volume 158 (2003) no. 3, pp. 769-873 | DOI | MR | Zbl
[Art04] Automorphic representations of , Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 65-81 | MR | Zbl
[Art13] The endoscopic classification of representations. Orthogonal and symplectic groups, Colloquium Publications, 61, American Mathematical Society, Providence, RI, 2013 | DOI | Zbl
[AS14] Image of functoriality for general spin groups, Manuscripta Math., Volume 144 (2014) no. 3-4, pp. 609-638 | DOI | MR | Zbl
[Aub95] Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif -adique, Trans. Amer. Math. Soc., Volume 347 (1995) no. 6, pp. 2179-2189 | DOI | MR | Zbl
[BCGP] Abelian surfaces over totally real fields are potentially modular (in preparation)
[Ber84] -invariant distributions on and the classification of unitary representations of (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) (Lect. Notes in Math.), Volume 1041, Springer, Berlin, 1984, pp. 50-102 | DOI | MR | Zbl
[Bor79] Automorphic -functions, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math.), Volume XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 27-61 | Zbl
[Bou05] Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics, Springer-Verlag, Berlin, 2005 | Zbl
[BT65] Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. (1965) no. 27, pp. 55-150 | DOI | Zbl
[BW00] Continuous cohomology, discrete subgroups, and representations of reductive groups, Math. Surveys and Monographs, 67, American Mathematical Society, Providence, RI, 2000 | MR | Zbl
[BZ76] Induced representations of the group over a -adic field, Funktsional. Anal. i Prilozhen., Volume 10 (1976) no. 3, pp. 74-75 | MR
[BZ77] Induced representations of reductive -adic groups. I, Ann. Sci. École Norm. Sup. (4), Volume 10 (1977) no. 4, pp. 441-472 | DOI | MR
[CG15] The local Langlands conjecture for III: Stability and twisted endoscopy, J. Number Theory, Volume 146 (2015), pp. 69-133 | DOI | MR | Zbl
[Che18] On restrictions and extensions of cusp forms (2018) (preliminary draft available at http://gaetan.chenevier.perso.math.cnrs.fr/pub.html)
[CL10] Le lemme fondamental pondéré. I. Constructions géométriques, Compositio Math., Volume 146 (2010) no. 6, pp. 1416-1506 | DOI | Zbl
[Clo84] Théorème d’Atiyah-Bott pour les variétés -adiques et caractères des groupes réductifs, Harmonic analysis on Lie groups and symmetric spaces (Kleebach, 1983) (Mém. Soc. Math. France (N.S.)), Volume 15, Société Mathématique de France, Paris, 1984, pp. 39-64 | Zbl
[Clo86] On limit multiplicities of discrete series representations in spaces of automorphic forms, Invent. Math., Volume 83 (1986) no. 2, pp. 265-284 | DOI | MR | Zbl
[CS80] The unramified principal series of -adic groups. II. The Whittaker function, Compositio Math., Volume 41 (1980) no. 2, pp. 207-231 | MR | Zbl
[GJ78] A relation between automorphic representations of and , Ann. Sci. École Norm. Sup. (4), Volume 11 (1978) no. 4, pp. 471-542 | DOI | MR | Zbl
[GK82] -indistinguishability and groups for the special linear group, Adv. in Math., Volume 43 (1982) no. 2, pp. 101-121 | DOI | MR | Zbl
[GT10] The local Langlands conjecture for Sp(4), Internat. Math. Res. Notices (2010) no. 15, pp. 2987-3038 | DOI | MR | Zbl
[GT11a] The local Langlands conjecture for , Ann. of Math. (2), Volume 173 (2011) no. 3, pp. 1841-1882 | DOI | MR | Zbl
[GT11b] Theta correspondences for , Represent. Theory, Volume 15 (2011), pp. 670-718 | DOI | MR | Zbl
[Hal95] On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math., Volume 47 (1995) no. 5, pp. 974-994 | DOI | MR | Zbl
[Hen09] Sur la fonctorialité, pour , donnée par le carré extérieur, Moscow Math. J., Volume 9 (2009) no. 1, pp. 33-45 | DOI | Zbl
[HS12] On -packets for inner forms of , Mem. Amer. Math. Soc., 215, no. 1013, American Mathematical Society, Providence, RI, 2012 | DOI | Zbl
[HT01] The geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies, 151, Princeton University Press, Princeton, NJ, 2001 | MR | Zbl
[Joh84] Lie algebra cohomology and the resolution of certain Harish-Chandra modules, Math. Ann., Volume 267 (1984) no. 3, pp. 377-393 | DOI | MR | Zbl
[JS77] A non-vanishing theorem for zeta functions of , Invent. Math., Volume 38 (1976/77) no. 1, pp. 1-16 | DOI | MR | Zbl
[JS81] On Euler products and the classification of automorphic forms. II, Amer. J. Math., Volume 103 (1981) no. 4, pp. 777-815 | DOI | MR | Zbl
[Kal15] Global rigid inner forms and multiplicities of discrete automorphic representations, 2015 (arXiv:1501.01667)
[Kim03] Functoriality for the exterior square of and the symmetric fourth of , J. Amer. Math. Soc., Volume 16 (2003) no. 1, pp. 139-183 | DOI | MR
[Knu91] Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[Kot86] Stable trace formula: elliptic singular terms, Math. Ann., Volume 275 (1986) no. 3, pp. 365-399 | DOI | MR | Zbl
[Kri03] The Asai transfer to via the Langlands-Shahidi method, Internat. Math. Res. Notices (2003) no. 41, pp. 2221-2254 | DOI | MR
[Kri12] Determination of cusp forms on by coefficients restricted to quadratic subfields (with an appendix by Dipendra Prasad and Dinakar Ramakrishnan), J. Number Theory, Volume 132 (2012) no. 6, pp. 1359-1384 | DOI | MR | Zbl
[KS99] Foundations of twisted endoscopy, Astérisque, 255, Société Mathématique de France, Paris, 1999 | Zbl
[KS12] On splitting invariants and sign conventions in endoscopic transfer, 2012 (arXiv:1201.5658)
[Lab85] Cohomologie, -groupes et fonctorialité, Compositio Math., Volume 55 (1985) no. 2, pp. 163-184 | MR | Zbl
[Lab99] Cohomologie, stabilisation et changement de base, Astérisque, 257, Société Mathématique de France, Paris, 1999, vi+161 pages | Zbl
[Lan79] Automorphic representations, Shimura varieties, and motives. Ein Märchen, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math.), Volume XXXIII, American Mathematical Society, Providence, RI, 1979, pp. 205-246 | Zbl
[Lan80] Base change for , Annals of Math. Studies, 96, Princeton University Press, Princeton, N.J., 1980 | MR | Zbl
[Lan83] Les débuts d’une formule des traces stable, Publications Mathématiques de l’Université Paris VII, 13, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1983 | Zbl
[Lan89] On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups (Math. Surveys Monogr.), Volume 31, American Mathematical Society, 1989, pp. 101-170 | DOI | MR | Zbl
[Lem10] Caractères tordus des représentations admissibles, 2010 (arXiv:1007.3576)
[LL79] -indistinguishability for , Canad. J. Math., Volume 31 (1979) no. 4, pp. 726-785 | DOI | MR | Zbl
[LMW15] Le lemme fondamental pour l’endoscopie tordue: réduction aux éléments unités, 2015 (arXiv:1506.03383)
[LW13] La formule des traces tordue d’après le Friday Morning Seminar, CRM Monograph Series, 31, American Mathematical Society, Providence, RI, 2013 | Zbl
[LW15] Le lemme fondamental pour l’endoscopie tordue: le cas où le groupe endoscopique non ramifié est un tore, 2015 (arXiv:1511.08606)
[Mez16] Tempered spectral transfer in the twisted endoscopy of real groups, J. Inst. Math. Jussieu, Volume 15 (2016) no. 3, pp. 569-612 | DOI | MR | Zbl
[Mok14] Galois representations attached to automorphic forms on over CM fields, Compositio Math., Volume 150 (2014) no. 4, pp. 523-567 | DOI | MR | Zbl
[MR15] Paquets d’Arthur des groupes classiques complexes, 2015 (arXiv:1507.01432)
[MW89] Le spectre résiduel de , Ann. Sci. École Norm. Sup. (4), Volume 22 (1989) no. 4, pp. 605-674 | DOI | Zbl
[MW94] Décomposition spectrale et séries d’Eisenstein. Une paraphrase de l’Écriture, Progress in Math., 113, Birkhäuser Verlag, Basel, 1994 | Zbl
[MW06] Sur le transfert des traces d’un groupe classique -adique à un groupe linéaire tordu, Selecta Math. (N.S.), Volume 12 (2006) no. 3-4, pp. 433-515 | DOI | Zbl
[MW16a] Stabilisation de la formule des traces tordue. Vol. 1, Progress in Math., 316, Birkhäuser/Springer, Cham, 2016 | MR | Zbl
[MW16b] Stabilisation de la formule des traces tordue. Vol. 2, Progress in Math., 317, Birkhäuser/Springer, Cham, 2016 | MR | Zbl
[Mœg06] Sur certains paquets d’Arthur et involution d’Aubert-Schneider-Stuhler généralisée, Represent. Theory, Volume 10 (2006), pp. 86-129 | DOI | Zbl
[Mœg11] Multiplicité 1 dans les paquets d’Arthur aux places -adiques, On certain -functions (Clay Math. Proc.), Volume 13, American Mathematical Society, Providence, RI, 2011, pp. 333-374 | Zbl
[Ngô10] Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. (2010) no. 111, pp. 1-169 | DOI | Zbl
[PR94] Algebraic groups and number theory, Pure and Applied Math., 139, Academic Press, Inc., Boston, MA, 1994 | MR | Zbl
[Ram00] Modularity of the Rankin-Selberg -series, and multiplicity one for , Ann. of Math. (2), Volume 152 (2000) no. 1, pp. 45-111 | DOI | MR | Zbl
[Ram02] Modularity of solvable Artin representations of -type, Internat. Math. Res. Notices (2002) no. 1, pp. 1-54 | DOI | MR | Zbl
[Rod73] Whittaker models for admissible representations of reductive -adic split groups, Harmonic analysis on homogeneous spaces (Williams Coll., Williamstown, Mass., 1972) (Proc. Sympos. Pure Math.), Volume XXVI, American Mathematical Society, Providence, RI, 1973, pp. 425-430 | Zbl
[RV18] A factorization result for classical and similitude groups, Canad. Math. Bull., Volume 61 (2018) no. 1, p. 174–190 | DOI | MR | Zbl
[Sat63] Theory of spherical functions on reductive algebraic groups over -adic fields, Publ. Math. Inst. Hautes Études Sci. (1963) no. 18, pp. 5-69 | DOI | MR | Zbl
[Ser97] Répartition asymptotique des valeurs propres de l’opérateur de Hecke , J. Amer. Math. Soc., Volume 10 (1997) no. 1, pp. 75-102 | DOI
[Sha74] The multiplicity one theorem for , Ann. of Math. (2), Volume 100 (1974), pp. 171-193 | DOI | MR | Zbl
[Sha81] On certain -functions, Amer. J. Math., Volume 103 (1981) no. 2, pp. 297-355 | DOI | Zbl
[Sha97] On non-vanishing of twisted symmetric and exterior square -functions for , Pacific J. Math. (1997), pp. 311-322 (Special issue in memoriam Olga Taussky-Todd) | DOI | MR | Zbl
[Sha10] Eisenstein series and automorphic -functions, Colloquium Publications, 58, American Mathematical Society, Providence, RI, 2010 | DOI | MR | Zbl
[She08] Tempered endoscopy for real groups. III. Inversion of transfer and -packet structure, Represent. Theory, Volume 12 (2008), pp. 369-402 | DOI | MR | Zbl
[She10] Tempered endoscopy for real groups. II. Spectral transfer factors, Automorphic forms and the Langlands program (Adv. Lect. Math. (ALM)), Volume 9, Int. Press, Somerville, MA, 2010, pp. 236-276 | MR | Zbl
[She12] On geometric transfer in real twisted endoscopy, Ann. of Math. (2), Volume 176 (2012) no. 3, pp. 1919-1985 | DOI | MR | Zbl
[Sil78] The Langlands quotient theorem for -adic groups, Math. Ann., Volume 236 (1978) no. 2, pp. 95-104 | DOI | MR | Zbl
[Spr98] Linear algebraic groups, Progress in Math., 9, Birkhäuser Boston, Inc., Boston, MA, 1998 | MR | Zbl
[SS97] Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. Inst. Hautes Études Sci. (1997) no. 85, pp. 97-191 | DOI | MR | Zbl
[SZ14] Langlands classification for -parameters, 2014 (arXiv:1007.3576)
[Taï19] Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 3, p. 839–871 | MR | Zbl
[vD72] Computation of certain induced characters of -adic groups, Math. Ann., Volume 199 (1972), pp. 229-240 | DOI | MR | Zbl
[Vog86] The unitary dual of over an Archimedean field, Invent. Math., Volume 83 (1986) no. 3, pp. 449-505 | DOI | MR | Zbl
[VW90] Intertwining operators for real reductive groups, Adv. in Math., Volume 82 (1990) no. 2, pp. 203-243 | DOI | MR | Zbl
[Wal88] Real reductive groups. I, Pure and Applied Mathematics, 132, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[Wal97] Le lemme fondamental implique le transfert, Compositio Math., Volume 105 (1997) no. 2, pp. 153-236 | DOI | MR | Zbl
[Wal03] La formule de Plancherel pour les groupes -adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu, Volume 2 (2003) no. 2, pp. 235-333 | DOI | MR | Zbl
[War72] Harmonic analysis on semi-simple Lie groups. I, Grundlehren Math. Wiss., 188, Springer-Verlag, New York-Heidelberg, 1972 | MR | Zbl
[Xu16] On a lifting problem of L-packets, Compositio Math., Volume 152 (2016) no. 9, pp. 1800-1850 | DOI | MR | Zbl
[Xu18] L-packets of quasisplit GSp(2n) and GO(2n), Math. Ann., Volume 370 (2018) no. 1-2, pp. 71-189 | DOI | MR | Zbl
Cité par Sources :