Dans [1], André a introduit les
In [1], André has introduced
Accepté le :
Publié le :
DOI : 10.5802/jep.28
Keywords: E-operator, G-operator, Laplace transform, special value, arithmetic Gevrey series, asymptotic expansion
Mot clés : E-opérateur, G-opérateur, transformée de Laplace, valeur spéciale, série Gevrey arithmétique, développement asymptotique
@article{JEP_2016__3__31_0, author = {Fischler, St\'ephane and Rivoal, Tanguy}, title = {Arithmetic theory of $E$-operators}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {31--65}, publisher = {ole polytechnique}, volume = {3}, year = {2016}, doi = {10.5802/jep.28}, mrnumber = {3477864}, zbl = {1370.11090}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jep.28/} }
TY - JOUR AU - Fischler, Stéphane AU - Rivoal, Tanguy TI - Arithmetic theory of $E$-operators JO - Journal de l’École polytechnique - Mathématiques PY - 2016 SP - 31 EP - 65 VL - 3 PB - ole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.28/ DO - 10.5802/jep.28 LA - en ID - JEP_2016__3__31_0 ER -
Fischler, Stéphane; Rivoal, Tanguy. Arithmetic theory of $E$-operators. Journal de l’École polytechnique - Mathématiques, Tome 3 (2016), pp. 31-65. doi : 10.5802/jep.28. https://www.numdam.org/articles/10.5802/jep.28/
[1] Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité, Ann. of Math. (2), Volume 151 (2000) no. 2, pp. 705-740 | DOI | Zbl
[2] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, 17, Société Mathématique de France, Paris, 2004, xii+261 pages | Zbl
[3] Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999, xvi+664 pages | DOI | MR
[4] Rational approximants for Euler constant and recurrence relations, Sovremennye Problemy Matematiki (“Current Problems in Mathematics”), 9 (2007)
[5] Algebraic values of
[6] A refined version of the Siegel-Shidlovskii theorem, Ann. of Math. (2), Volume 163 (2006) no. 1, pp. 369-379 | DOI | MR | Zbl
[7] A short proof of the simple continued fraction expansion of
[8] Analyse combinatoire. Tome I, Collection SUP “Le Mathématicien”, Presses Universitaires de France, Paris, 1970 | MR
[9] Calcul opérationnel, Éditions Mir, Moscou, 1979, 439 pages
[10] Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées, Pacific J. Math., Volume 138 (1989) no. 1, pp. 25-56 http://projecteuclid.org/euclid.pjm/1102650279 | DOI | Zbl
[11] On the values of
[12] Microsolutions of differential operators and values of arithmetic Gevrey series (2015) (arXiv:1506.03574) | Zbl
[13] Analytic combinatorics, Cambridge University Press, Cambridge, 2009, xiv+810 pages | DOI | Zbl
[14] Rational approximations to values of Bell polynomials at points involving Euler’s constant and zeta values, J. Austral. Math. Soc., Volume 92 (2012) no. 1, pp. 71-98 | DOI | MR | Zbl
[15] On a continued fraction expansion for Euler’s constant, J. Number Theory, Volume 133 (2013) no. 2, pp. 769-786 | DOI | MR | Zbl
[16] Periods, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771-808 | DOI | Zbl
[17] Euler’s constant: Euler’s work and modern developments, Bull. Amer. Math. Soc. (N.S.), Volume 50 (2013) no. 4, pp. 527-628 | DOI | MR | Zbl
[18] Séries formelles provenant de systèmes différentiels linéaires méromorphes, Séries divergentes et procédés de resommation (Journées X-UPS 1991), Éditions de l’École polytechnique, Palaiseau, 1991, pp. 69-100
[19] Séries divergentes et théories asymptotiques, Panor. Synth., 0, Société Mathématique de France, Paris, 1994, 74 pages
[20] Rational approximations for values of derivatives of the gamma function, Trans. Amer. Math. Soc., Volume 361 (2009) no. 11, pp. 6115-6149 | DOI | MR | Zbl
[21] Approximations rationnelles des valeurs de la fonction gamma aux rationnels, J. Number Theory, Volume 130 (2010) no. 4, pp. 944-955 | DOI | MR | Zbl
[22] On the arithmetic nature of the values of the gamma function, Euler’s constant, and Gompertz’s constant, Michigan Math. J., Volume 61 (2012) no. 2, pp. 239-254 | DOI | MR | Zbl
[23] Transcendental numbers, de Gruyter Studies in Mathematics, 12, Walter de Gruyter & Co., Berlin, 1989, xx+466 pages | DOI | MR | Zbl
[24] Transcendance de périodes: état des connaissances, Proceedings of the Tunisian Mathematical Society, Volume 11, Nova Sci. Publ., New York, 2007, pp. 89-116
[25] A course of modern analysis, Cambridge University Press, Cambridge, 1927, vii+608 pages | Zbl
[26] On the coefficients of power series having exponential singularities, J. London Math. Soc., Volume 8 (1933), pp. 71-80 | DOI | MR | Zbl
[27] On the coefficients of power series having exponential singularities. II, J. London Math. Soc., Volume 24 (1949), pp. 304-309 | DOI | MR
Cité par Sources :