Étant donné un sous-groupe approximatif définissablement moyennable d’un groupe (local) dans une structure du premier ordre, il y a un sous-groupe type-définissable normalisé par et contenu dans tel que tout ensemble définissable contenant est de mesure positive.
Given a definably amenable approximate subgroup of a (local) group in some first-order structure, there is a type-definable subgroup normalized by and contained in such that every definable superset of has positive measure.
Keywords: Approximate subgroup, definability, definable amenability
Mot clés : Sous-groupe approximatif, moyennable, sous-groupe type-définissable
@article{JEP_2015__2__55_0, author = {Massicot, Jean-Cyrille and Wagner, Frank O.}, title = {Approximate subgroups}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {55--63}, publisher = {Ecole polytechnique}, volume = {2}, year = {2015}, doi = {10.5802/jep.17}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.17/} }
TY - JOUR AU - Massicot, Jean-Cyrille AU - Wagner, Frank O. TI - Approximate subgroups JO - Journal de l’École polytechnique - Mathématiques PY - 2015 SP - 55 EP - 63 VL - 2 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.17/ DO - 10.5802/jep.17 LA - en ID - JEP_2015__2__55_0 ER -
Massicot, Jean-Cyrille; Wagner, Frank O. Approximate subgroups. Journal de l’École polytechnique - Mathématiques, Tome 2 (2015), pp. 55-63. doi : 10.5802/jep.17. http://www.numdam.org/articles/10.5802/jep.17/
[1] The structure of approximate groups, Publ. Math. Inst. Hautes Études Sci., Volume 116 (2012), pp. 115-221 | DOI | Numdam | MR | Zbl
[2] Approximate groups [after Hrushovski, and Breuillard, Green, Tao], Séminaire Bourbaki (2013/14) (Astérisque), Société Mathématique de France (Exp. no 1077, to appear)
[3] Definable quotients of locally definable groups, Selecta Math. (N.S.), Volume 18 (2012) no. 4, pp. 885-903 | DOI | MR | Zbl
[4] Groups without small subgroups, Ann. of Math. (2), Volume 56 (1952), pp. 193-212 | MR | Zbl
[5] Hilbert’s fifth problem for local groups, Ann. of Math. (2), Volume 172 (2010) no. 2, pp. 1269-1314 | DOI | MR | Zbl
[6] Stable group theory and approximate subgroups, J. Amer. Math. Soc., Volume 25 (2012) no. 1, pp. 189-243 | DOI | MR | Zbl
[7] On NIP and invariant measures, J. Eur. Math. Soc. (JEMS), Volume 13 (2011) no. 4, pp. 1005-1061 | DOI | MR | Zbl
[8]
, Private communication, 2014[9] On a nonabelian Balog-Szemerédi-type lemma, J. Aust. Math. Soc., Volume 89 (2010) no. 1, pp. 127-132 | DOI | MR | Zbl
[10] A generalization of a theorem of Gleason, Ann. of Math. (2), Volume 58 (1953), pp. 351-365 | MR | Zbl
Cité par Sources :