Anti-holomorphic involutions of the moduli spaces of Higgs bundles
[Involutions anti-holomorphes des espaces de modules de fibrés de Higgs]
Journal de l’École polytechnique - Mathématiques, Tome 2 (2015), pp. 35-54.

Nous étudions les involutions anti-holomorphes des espaces de modules de G-fibrés de Higgs sur une surface de Riemann compacte X, où G est un groupe de Lie semi-simple complexe. Ces involutions sont définies en fixant des involutions anti-holomorphes à la fois sur X et G. Nous en analysons le lieu des points fixes dans l’espace de modules et leur relation avec les représentation du groupe fondamental orbifold de X muni de l’involution anti-holomorphe. Nous étudions aussi la relation avec les « branes ». Ceci généralise les travaux de Biswas–García-Prada–Hurtubise et Baraglia–Schaposnik.

We study anti-holomorphic involutions of the moduli space of G-Higgs bundles over a compact Riemann surface X, where G is a complex semisimple Lie group. These involutions are defined by fixing anti-holomorphic involutions on both X and G. We analyze the fixed point locus in the moduli space and their relation with representations of the orbifold fundamental group of X equipped with the anti-holomorphic involution. We also study the relation with branes. This generalizes work by Biswas–García-Prada–Hurtubise and Baraglia–Schaposnik.

DOI : 10.5802/jep.16
Classification : 14H60, 57R57, 58D29
Keywords: Higgs $G$-bundle, reality condition, branes, character variety.
Mot clés : $G$-fibré de Higgs, condition de réalité, « branes », variétés caractères.
Biswas, Indranil 1 ; García-Prada, Oscar 2

1 School of Mathematics, Tata Institute of Fundamental Research Homi Bhabha Road, Bombay 400005, India
2 Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM Nicolás Cabrera, 13–15, 28049 Madrid, Spain
@article{JEP_2015__2__35_0,
     author = {Biswas, Indranil and Garc{\'\i}a-Prada, Oscar},
     title = {Anti-holomorphic involutions of the~moduli~spaces of {Higgs} bundles},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques},
     pages = {35--54},
     publisher = {Ecole polytechnique},
     volume = {2},
     year = {2015},
     doi = {10.5802/jep.16},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.16/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - García-Prada, Oscar
TI  - Anti-holomorphic involutions of the moduli spaces of Higgs bundles
JO  - Journal de l’École polytechnique - Mathématiques
PY  - 2015
SP  - 35
EP  - 54
VL  - 2
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.16/
DO  - 10.5802/jep.16
LA  - en
ID  - JEP_2015__2__35_0
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A García-Prada, Oscar
%T Anti-holomorphic involutions of the moduli spaces of Higgs bundles
%J Journal de l’École polytechnique - Mathématiques
%D 2015
%P 35-54
%V 2
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.16/
%R 10.5802/jep.16
%G en
%F JEP_2015__2__35_0
Biswas, Indranil; García-Prada, Oscar. Anti-holomorphic involutions of the moduli spaces of Higgs bundles. Journal de l’École polytechnique - Mathématiques, Tome 2 (2015), pp. 35-54. doi : 10.5802/jep.16. http://www.numdam.org/articles/10.5802/jep.16/

[1] Atiyah, M. F. Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207 | MR | Zbl

[2] Baraglia, D. Classification of the automorphism and isometry groups of Higgs bundle moduli spaces (2014) (arXiv:1411.2228)

[3] Baraglia, D.; Schaposnik, L. P. Real structures on moduli spaces of Higgs bundles (to appear in Adv. Theo. Math. Phys.) | MR

[4] Baraglia, D.; Schaposnik, L. P. Higgs bundles and (A,B,A)-branes, Comm. Math. Phys., Volume 331 (2014) no. 3, pp. 1271-1300 | DOI

[5] Biswas, I.; García-Prada, O.; Hurtubise, J. Higgs bundles on compact Kähler manifolds, Ann. Inst. Fourier (Grenoble), Volume 64 (2014), pp. 2527-2562

[6] Biswas, I.; Hoffmann, N. A Torelli theorem for moduli spaces of principal bundles over a curve, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 1, pp. 87-106 | Numdam | MR | Zbl

[7] Biswas, I.; Schumacher, G. Yang-Mills equation for stable Higgs sheaves, Internat. J. Math., Volume 20 (2009) no. 5, pp. 541-556 | DOI | MR | Zbl

[8] Bradlow, S. B.; García-Prada, O.; Mundet i Riera, I. Relative Hitchin-Kobayashi correspondences for principal pairs, Q. J. Math., Volume 54 (2003) no. 2, pp. 171-208 | DOI | MR | Zbl

[9] Cartan, É. Les groupes réels simples, finis et continus, Ann. Sci. École Norm. Sup., Volume 31 (1914), pp. 263-355

[10] Corlette, K. Flat G-bundles with canonical metrics, J. Differential Geom., Volume 28 (1988) no. 3, pp. 361-382 http://projecteuclid.org/euclid.jdg/1214442469 | MR | Zbl

[11] Donaldson, S. K. Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3), Volume 55 (1987) no. 1, pp. 127-131 | DOI | MR | Zbl

[12] García-Prada, O. Involutions of the moduli space of SL(n,)-Higgs bundles and real forms, Vector bundles and low codimensional subvarieties: state of the art and recent developments (Quad. Mat.), Volume 21, Dept. Math., Seconda Univ. Napoli, Caserta, 2007, pp. 219-238 | MR

[13] García-Prada, O. Higgs bundles and surface group representations, Moduli spaces and vector bundles (London Math. Soc. Lecture Note Ser.), Volume 359, Cambridge Univ. Press, Cambridge, 2009, pp. 265-310 | MR | Zbl

[14] García-Prada, O.; Gothen, P. B.; Mundet i Riera, I. The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations (2009) (arXiv:0909.4487)

[15] García-Prada, O.; Ramanan, S. Involutions of Higgs bundle moduli spaces (in preparation)

[16] Goldman, W. M. The symplectic nature of fundamental groups of surfaces, Advances in Math., Volume 54 (1984) no. 2, pp. 200-225 | DOI | MR | Zbl

[17] Hitchin, N. J. The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), Volume 55 (1987) no. 1, pp. 59-126 | DOI | MR | Zbl

[18] Hitchin, N. J. Higgs bundles and characteristic classes (2013) (arXiv:1308.4603)

[19] Ho, N.-K.; Wilkin, G.; Wu, S. Hitchin’s equations on a nonorientable manifold (2012) (arXiv:1211.0746)

[20] Kapustin, A.; Witten, E. Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys., Volume 1 (2007) no. 1, pp. 1-236 | DOI | MR | Zbl

[21] Kobayashi, S. Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, Princeton, NJ, 1987, pp. xii+305 | MR | Zbl

[22] de Siebenthal, J. Sur les groupes de Lie compacts non connexes, Comment. Math. Helv., Volume 31 (1956), pp. 41-89 | MR | Zbl

[23] Simpson, C. T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988) no. 4, pp. 867-918 | DOI | MR | Zbl

[24] Simpson, C. T. Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci. (1992) no. 75, pp. 5-95 | Numdam | MR | Zbl

[25] Simpson, C. T. Moduli of representations of the fundamental group of a smooth projective variety. II, Publ. Math. Inst. Hautes Études Sci. (1994) no. 80, pp. 5-79 | Numdam | MR | Zbl

Cité par Sources :