An indiscrete Bieberbach theorem: from amenable CAT(0) groups to Tits buildings
[Bieberbach indiscret : des groupes CAT(0) moyennables aux immeubles de Tits]
Journal de l’École polytechnique — Mathématiques, Tome 2 (2015), pp. 333-383.

Nous étudions les espaces à courbure négative qui admettent une action cocompacte d’un groupe moyennable. Lorsque le groupe de toutes les isométries est sans point fixe global à l’infini, une classification est établie ; le bord à l’infini est alors un immeuble sphérique. Si en outre l’espace est géodésiquement complet, il s’agit nécessairement d’un produit de plats, d’espaces symétriques, d’arbres bi-réguliers et d’immeubles de Bruhat–Tits.

Lorsqu’un immeuble sphérique apparaît comme bord d’un espace CAT(0) propre, nous proposons un critère qui implique la condition de Moufang. Nous en déduisons qu’un immeuble euclidien irréductible localement fini de dimension 2 est de Bruhat–Tits si et seulement si son groupe d’automorphismes est cocompact et opère transitivement sur les chambres à l’infini.

Non-positively curved spaces admitting a cocompact isometric action of an amenable group are investigated. A classification is established under the assumption that there is no global fixed point at infinity under the full isometry group. The visual boundary is then a spherical building. When the ambient space is geodesically complete, it must be a product of flats, symmetric spaces, biregular trees and Bruhat–Tits buildings.

We provide moreover a sufficient condition for a spherical building arising as the visual boundary of a proper CAT(0) space to be Moufang, and deduce that an irreducible locally finite Euclidean building of dimension 2 is a Bruhat–Tits building if and only if its automorphism group acts cocompactly and chamber-transitively at infinity.

DOI : 10.5802/jep.26
Classification : 53C20, 53C24, 43A07, 53C23, 20F65, 20E42
Keywords: Building, symmetric space, CAT(0) space, amenable group, non-positive curvature, locally compact group
Mot clés : Immeuble, espace symétrique, espace CAT(0), groupe moyennable, courbure négative, groupe localement compact
Caprace, Pierre-Emmanuel 1 ; Monod, Nicolas 2

1 Université catholique de Louvain, IRMP Chemin du Cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgique
2 EPFL 1015 Lausanne, Switzerland
@article{JEP_2015__2__333_0,
     author = {Caprace, Pierre-Emmanuel and Monod, Nicolas},
     title = {An indiscrete {Bieberbach} theorem: from~amenable {CAT}$(0)$ groups to {Tits} buildings},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {333--383},
     publisher = {Ecole polytechnique},
     volume = {2},
     year = {2015},
     doi = {10.5802/jep.26},
     zbl = {1332.53048},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.26/}
}
TY  - JOUR
AU  - Caprace, Pierre-Emmanuel
AU  - Monod, Nicolas
TI  - An indiscrete Bieberbach theorem: from amenable CAT$(0)$ groups to Tits buildings
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2015
SP  - 333
EP  - 383
VL  - 2
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.26/
DO  - 10.5802/jep.26
LA  - en
ID  - JEP_2015__2__333_0
ER  - 
%0 Journal Article
%A Caprace, Pierre-Emmanuel
%A Monod, Nicolas
%T An indiscrete Bieberbach theorem: from amenable CAT$(0)$ groups to Tits buildings
%J Journal de l’École polytechnique — Mathématiques
%D 2015
%P 333-383
%V 2
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.26/
%R 10.5802/jep.26
%G en
%F JEP_2015__2__333_0
Caprace, Pierre-Emmanuel; Monod, Nicolas. An indiscrete Bieberbach theorem: from amenable CAT$(0)$ groups to Tits buildings. Journal de l’École polytechnique — Mathématiques, Tome 2 (2015), pp. 333-383. doi : 10.5802/jep.26. http://www.numdam.org/articles/10.5802/jep.26/

[1] Abramenko, P.; Brown, K. S. Buildings. Theory and applications, Graduate Texts in Math., 248, Springer, New York, 2008 | MR | Zbl

[2] Adams, S.; Ballmann, W. Amenable isometry groups of Hadamard spaces, Math. Ann., Volume 312 (1998) no. 1, pp. 183-195 | MR | Zbl

[3] Anderson, M. T. On the fundamental group of nonpositively curved manifolds, Math. Ann., Volume 276 (1987) no. 2, pp. 269-278 | EuDML | MR | Zbl

[4] Arens, R. Topologies for homeomorphism groups, Amer. J. Math., Volume 68 (1946), pp. 593-610 | MR | Zbl

[5] Avez, A. Variétés riemanniennes sans points focaux, C. R. Acad. Sci. Paris Sér. A-B, Volume 270 (1970), p. A188-A191 | MR | Zbl

[6] Azencott, R.; Wilson, E. N. Homogeneous manifolds with negative curvature. I, Trans. Amer. Math. Soc., Volume 215 (1976), pp. 323-362 | MR | Zbl

[7] Ballmann, W. Lectures on spaces of nonpositive curvature, DMV Seminar, 25, Birkhäuser Verlag, Basel, 1995, pp. viii+112 (With an appendix by Misha Brin) | MR | Zbl

[8] Ballmann, W.; Brin, M. Diameter rigidity of spherical polyhedra, Duke Math. J., Volume 97 (1999) no. 2, pp. 235-259 | DOI | MR | Zbl

[9] Balser, A.; Lytchak, A. Centers of convex subsets of buildings, Ann. Global Anal. Geom., Volume 28 (2005) no. 2, pp. 201-209 | MR | Zbl

[10] Balser, A.; Lytchak, A. Building-like spaces, J. Math. Kyoto Univ., Volume 46 (2006) no. 4, pp. 789-804 | MR | Zbl

[11] Bridson, M. R.; Haefliger, A. Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer, Berlin, 1999 | MR | Zbl

[12] Burger, M.; Schroeder, V. Amenable groups and stabilizers of measures on the boundary of a Hadamard manifold, Math. Ann., Volume 276 (1987) no. 3, pp. 505-514 | MR | Zbl

[13] Burns, K.; Spatzier, R. On topological Tits buildings and their classification, Publ. Math. Inst. Hautes Études Sci., Volume 65 (1987), pp. 5-34 | Numdam | MR | Zbl

[14] Caprace, P.-E. Lectures on proper CAT (0) spaces and their isometry groups, Geometric group theory (IAS/Park City Math. Ser.), Volume 21, American Mathematical Society, Providence, R.I., 2014, pp. 91-125 | MR

[15] Caprace, P.-E.; de Cornulier, Y.; Monod, N.; Tessera, R. Amenable hyperbolic groups, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 11, pp. 2903-2947 | MR

[16] Caprace, P.-E.; Monod, N. Isometry groups of non-positively curved spaces: structure theory, J. Topology, Volume 2 (2009) no. 4, pp. 661-700 | MR | Zbl

[17] Caprace, P.-E.; Monod, N. Fixed points and amenability in non-positive curvature, Math. Ann., Volume 356 (2013) no. 4, pp. 1303-1337 | DOI | MR | Zbl

[18] Foertsch, T.; Lytchak, A. The de Rham decomposition theorem for metric spaces, Geom. Funct. Anal., Volume 18 (2008) no. 1, pp. 120-143 | MR | Zbl

[19] Geoghegan, R.; Ontaneda, P. Boundaries of cocompact proper CAT (0) spaces, Topology, Volume 46 (2007) no. 2, pp. 129-137 | MR | Zbl

[20] Gromoll, D.; Wolf, J. A. Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 545-552 | MR | Zbl

[21] Grundhöfer, T.; Kramer, L.; Van Maldeghem, H.; Weiss, R. M. Compact totally disconnected Moufang buildings, Tôhoku Math. J. (2), Volume 64 (2012) no. 3, pp. 333-360 | MR | Zbl

[22] Grundhöfer, T.; Van Maldeghem, H. Topological polygons and affine buildings of rank three, Atti Sem. Mat. Fis. Univ. Modena, Volume 38 (1990) no. 2, pp. 459-479 | MR | Zbl

[23] Guralnik, D. P.; Swenson, E. L. A ‘transversal’ for minimal invariant sets in the boundary of a CAT(0) group, Trans. Amer. Math. Soc., Volume 365 (2013) no. 6, pp. 3069-3095 | MR

[24] Heintze, E. On homogeneous manifolds of negative curvature, Math. Ann., Volume 211 (1974), pp. 23-34 | MR | Zbl

[25] Kleiner, B. The local structure of length spaces with curvature bounded above, Math. Z., Volume 231 (1999) no. 3, pp. 409-456 | MR | Zbl

[26] Kleiner, B.; Leeb, B. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math. Inst. Hautes Études Sci., Volume 86 (1997), pp. 115-197 | Numdam | MR | Zbl

[27] Lawson, H. B. Jr.; Yau, S.-T. Compact manifolds of nonpositive curvature, J. Differential Geom., Volume 7 (1972), pp. 211-228 | MR | Zbl

[28] Leeb, B. A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften, 326, Universität Bonn Mathematisches Institut, Bonn, 2000, pp. ii+42 | MR | Zbl

[29] Lytchak, A. Rigidity of spherical buildings and joins, Geom. Funct. Anal., Volume 15 (2005) no. 3, pp. 720-752 | MR | Zbl

[30] Lytchak, A.; Schroeder, V. Affine functions on CAT (κ)-spaces, Math. Z., Volume 255 (2007) no. 2, pp. 231-244 | MR | Zbl

[31] Monod, N. Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc., Volume 19 (2006) no. 4, pp. 781-814 | MR | Zbl

[32] Monod, N.; Py, P. An exotic deformation of the hyperbolic space, Amer. J. Math., Volume 136 (2014) no. 5, pp. 1249-1299 | MR | Zbl

[33] Mühlherr, B.; Petersson, H. P.; Weiss, R. M. Descent in the buildings, Annals of Mathematics Studies, 190, Princeton University Press, Princeton, N.J., 2015 | MR

[34] Oliver, R. K. On Bieberbach’s analysis of discrete Euclidean groups, Proc. Amer. Math. Soc., Volume 80 (1980) no. 1, pp. 15-21 | MR | Zbl

[35] Papasoglu, P.; Swenson, E. Boundaries and JSJ decompositions of CAT(0)-groups, Geom. Funct. Anal., Volume 19 (2009) no. 2, pp. 559-590 | MR | Zbl

[36] Swenson, E. On cyclic CAT (0) domains of discontinuity, Groups Geom. Dyn., Volume 7 (2013) no. 3, pp. 737-750 | MR

[37] Tits, J. Buildings of spherical type and finite BN-pairs, Lect. Notes in Math., 386, Springer-Verlag, Berlin, 1974, pp. x+299 | MR | Zbl

[38] Tits, J. Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Invent. Math., Volume 43 (1977) no. 3, pp. 283-295 | MR | Zbl

[39] Tits, J. Résumés des cours au Collège de France 1973–2000, Documents Mathématiques, 12, Société Mathématique de France, Paris, 2013 | MR | Zbl

[40] Tits, J.; Weiss, R. M. Moufang polygons, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002, pp. x+535 | MR | Zbl

[41] Van Maldeghem, H.; Van Steen, K. Characterizations by automorphism groups of some rank 3 buildings. I. Some properties of half strongly-transitive triangle buildings, Geom. Dedicata, Volume 73 (1998) no. 2, pp. 119-142 | MR | Zbl

[42] Weiss, R. M. The structure of spherical buildings, Princeton University Press, Princeton, N.J., 2003, pp. xiv+135 | MR | Zbl

[43] Weiss, R. M. The structure of affine buildings, Annals of Mathematics Studies, 168, Princeton University Press, Princeton, N.J., 2009, pp. xii+368 | MR | Zbl

Cité par Sources :