Nous définissons des anneaux de déformations pour les déformations potentiellement semi-stables ayant un type étendu de la série discrète fixé en dimension . Dans le cas des représentations du groupe de Galois de , nous prouvons un analogue de la conjecture de Breuil-Mézard pour ces anneaux. Nous donnons comme application de ceci des résultats sur l’existence de congruences modulo pour les formes nouvelles dans .
We define deformation rings for potentially semi-stable deformations of fixed discrete series extended type in dimension . In the case of representations of the Galois group of , we prove an analogue of the Breuil-Mézard conjecture for these rings. As an application, we give some results on the existence of congruences modulo for newforms in .
Keywords: Galois representations, deformation rings, Breuil-Mézard conjecture
Mot clés : Représentations galoisiennes, anneaux de déformations, conjecture de Breuil-Mézard
@article{JEP_2015__2__179_0, author = {Rozensztajn, Sandra}, title = {Potentially semi-stable deformation rings for discrete series extended types}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {179--211}, publisher = {Ecole polytechnique}, volume = {2}, year = {2015}, doi = {10.5802/jep.22}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.22/} }
TY - JOUR AU - Rozensztajn, Sandra TI - Potentially semi-stable deformation rings for discrete series extended types JO - Journal de l’École polytechnique - Mathématiques PY - 2015 SP - 179 EP - 211 VL - 2 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.22/ DO - 10.5802/jep.22 LA - en ID - JEP_2015__2__179_0 ER -
%0 Journal Article %A Rozensztajn, Sandra %T Potentially semi-stable deformation rings for discrete series extended types %J Journal de l’École polytechnique - Mathématiques %D 2015 %P 179-211 %V 2 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.22/ %R 10.5802/jep.22 %G en %F JEP_2015__2__179_0
Rozensztajn, Sandra. Potentially semi-stable deformation rings for discrete series extended types. Journal de l’École polytechnique - Mathématiques, Tome 2 (2015), pp. 179-211. doi : 10.5802/jep.22. http://www.numdam.org/articles/10.5802/jep.22/
[AB07] Congruences for modular forms of weights two and four, J. Number Theory, Volume 126 (2007) no. 2, pp. 193-199 | DOI | MR | Zbl
[All14] Deformations of polarized automorphic Galois representations and adjoint Selmer groups (2014) (arXiv:1411.7661)
[BC08] Familles de représentations de de Rham et monodromie -adique, Représentations -adiques de groupes -adiques. I. Représentations galoisiennes et -modules (Astérisque), Volume 319, Société Mathématique de France, Paris, 2008, pp. 303-337 | Numdam | MR | Zbl
[BCDT01] On the modularity of elliptic curves over : wild 3-adic exercises, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl
[BD14] Formes modulaires de Hilbert modulo et valeurs d’extensions entre caractères galoisiens, Ann. Sci. École Norm. Sup. (4), Volume 47 (2014) no. 5, pp. 905-974 | MR
[BH06] The local Langlands conjecture for , Grundlehren der Mathematischen Wissenschaften, 335, Springer-Verlag, Berlin, 2006, pp. xii+347 | DOI | MR | Zbl
[BM02] Multiplicités modulaires et représentations de et de en , Duke Math. J., Volume 115 (2002) no. 2, pp. 205-310 (with an appendix by G. Henniart) | DOI | MR | Zbl
[BP11] mod congruences for cusp forms of weight four for , Int. J. Number Theory, Volume 7 (2011) no. 2, pp. 341-350 | DOI | MR | Zbl
[CDT99] Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 521-567 | DOI | MR | Zbl
[CS04] Conjectures about discriminants of Hecke algebras of prime level, Algorithmic number theory (Lecture Notes in Comput. Sci.), Volume 3076, Springer, Berlin, 2004, pp. 140-152 | DOI | MR | Zbl
[DDT97] Fermat’s last theorem, Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1997, pp. 2-140 | MR | Zbl
[EG14] A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, Volume 13 (2014) no. 1, pp. 183-223 | DOI | MR
[Fon94a] Représentations -adiques potentiellement semi-stables, Périodes -adiques (Bures-sur-Yvette, 1988) (Astérisque), Volume 223, Société Mathématique de France, Paris, 1994, pp. 321-347 | Numdam | MR | Zbl
[Fon94b] Représentations -adiques semi-stables, Périodes -adiques (Bures-sur-Yvette, 1988) (Astérisque), Volume 223, Société Mathématique de France, Paris, 1994, pp. 113-184 (with an appendix by P. Colmez) | Numdam | MR | Zbl
[Gee11] Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011) no. 1, pp. 107-144 | DOI | MR | Zbl
[Gér78] Facteurs locaux des algèbres simples de rang . I, Reductive groups and automorphic forms, I (Paris, 1976/1977) (Publ. Math. Univ. Paris VII), Volume 1, Univ. Paris VII, Paris, 1978, pp. 37-77
[GG15] The Breuil-Mézard conjecture for quaternion algebras, Ann. Inst. Fourier (Grenoble), Volume 65 (2015) no. 1, pp. 1557-1575 | MR
[GK14] The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi, Volume 2 (2014), pp. e1, 56 | DOI | MR | Zbl
[GM09] Filtered modules with coefficients, Trans. Amer. Math. Soc., Volume 361 (2009) no. 5, pp. 2243-2261 | DOI | MR | Zbl
[GS11] Serre weights for quaternion algebras, Compositio Math., Volume 147 (2011) no. 4, pp. 1059-1086 | DOI
[HT01] The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, 151, Princeton University Press, Princeton, NJ, 2001, pp. viii+276 (with an appendix by V. G. Berkovich) | MR | Zbl
[HT15] The Breuil-Mézard conjecture for non-scalar split residual representations (2015) (to appear in Ann. Scient. de l’E.N.S. 48, no. 6, arXiv:1309.1658)
[Ima11] Filtered modules corresponding to potentially semi-stable representations, J. Number Theory, Volume 131 (2011) no. 2, pp. 239-259 | DOI | MR | Zbl
[Kha01] A local analysis of congruences in the case. II, Invent. Math., Volume 143 (2001) no. 1, pp. 129-155 | DOI | MR | Zbl
[Kis08] Potentially semi-stable deformation rings, J. Amer. Math. Soc., Volume 21 (2008) no. 2, pp. 513-546 | DOI | MR | Zbl
[Kis09a] The Fontaine-Mazur conjecture for , J. Amer. Math. Soc., Volume 22 (2009) no. 3, pp. 641-690 | DOI | MR | Zbl
[Kis09b] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Volume 170 (2009) no. 3, pp. 1085-1180 | DOI | MR | Zbl
[Mat89] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, pp. xiv+320 | MR | Zbl
[Paš15] On the Breuil-Mézard conjecture, Duke Math. J., Volume 164 (2015) no. 2, pp. 297-359 | DOI | MR
[Sai09] Hilbert modular forms and -adic Hodge theory, Compositio Math., Volume 145 (2009) no. 5, pp. 1081-1113 | DOI | MR | Zbl
[Tay06] On the meromorphic continuation of degree two -functions, Doc. Math. (2006), pp. 729-779 (Extra Vol.) | MR | Zbl
[Tay89] On Galois representations associated to Hilbert modular forms, Invent. Math., Volume 98 (1989) no. 2, pp. 265-280 | DOI | MR | Zbl
[Tok15] On the reduction modulo of representations of a quaternion division algebra over a -adic field, J. Number Theory, Volume 150 (2015), pp. 136-167 | DOI | MR
Cité par Sources :