On a counter-example to quantitative Jacobian bounds
[Sur un contre-exemple aux bornes quantitatives du jacobien]
Journal de l’École polytechnique - Mathématiques, Tome 2 (2015), pp. 171-178.

Cette note fournit un contre-exemple à la positivité locale du déterminant jacobien des solutions de l’équation de conduction en dimension 3. On montre que le signe du déterminant ne peut pas être imposé par un choix a priori de données au bord dans H 1/2 (Ω) dépendant seulement des bornes inférieure et supérieure de la conductivité, même localement. L’argument utilise une conductivité scalaire à deux phases construite par Briane, Milton & Nesi [11, 10].

This note provides a counter-example to the local positivity of the Jacobian determinant for solutions of the conductivity equation in dimension 3. It shows that the sign of the determinant cannot be imposed by an a priori choice of boundary data in H 1/2 (Ω) depending only on the upper and lower bound of the conductivity, even locally. The argument uses a scalar two-phase conductivity constructed by Briane, Milton & Nesi [11, 10].

DOI : 10.5802/jep.21
Classification : 35J55, 35R30, 35B27
Keywords: Radó-Kneser-Choquet Theorem, hybrid inverse problems, impedance tomography, homogenization
Mot clés : Théorème de Radó-Kneser-Choquet, problèmes inverses hybrides, tomographie d’impédance, homogénéisation
Capdeboscq, Yves 1

1 Mathematical Institute, University of Oxford, Andrew Wiles Building Woodstock Road, Oxford OX2 6GG, UK
@article{JEP_2015__2__171_0,
     author = {Capdeboscq, Yves},
     title = {On a counter-example to quantitative {Jacobian} bounds},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques},
     pages = {171--178},
     publisher = {Ecole polytechnique},
     volume = {2},
     year = {2015},
     doi = {10.5802/jep.21},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.21/}
}
TY  - JOUR
AU  - Capdeboscq, Yves
TI  - On a counter-example to quantitative Jacobian bounds
JO  - Journal de l’École polytechnique - Mathématiques
PY  - 2015
SP  - 171
EP  - 178
VL  - 2
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.21/
DO  - 10.5802/jep.21
LA  - en
ID  - JEP_2015__2__171_0
ER  - 
%0 Journal Article
%A Capdeboscq, Yves
%T On a counter-example to quantitative Jacobian bounds
%J Journal de l’École polytechnique - Mathématiques
%D 2015
%P 171-178
%V 2
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.21/
%R 10.5802/jep.21
%G en
%F JEP_2015__2__171_0
Capdeboscq, Yves. On a counter-example to quantitative Jacobian bounds. Journal de l’École polytechnique - Mathématiques, Tome 2 (2015), pp. 171-178. doi : 10.5802/jep.21. http://www.numdam.org/articles/10.5802/jep.21/

[1] Alessandrini, G.; Nesi, V. Univalent σ-harmonic mappings, Arch. Rational Mech. Anal., Volume 158 (2001) no. 2, pp. 155-171 | DOI | MR | Zbl

[2] Alessandrini, G.; Nesi, V. Beltrami operators, non-symmetric elliptic equations and quantitative Jacobian bounds, Ann. Acad. Sci. Fenn. Math., Volume 34 (2009) no. 1, pp. 47-67 | MR | Zbl

[3] Alessandrini, G.; Nesi, V. Quantitative estimates on Jacobians for hybrid inverse problems (2015) (arXiv:1501.03005)

[4] Ammari, H.; Bonnetier, E.; Capdeboscq, Y. Enhanced resolution in structured media, SIAM J. Appl. Math., Volume 70 (2009/10) no. 5, pp. 1428-1452 | DOI | MR | Zbl

[5] Bal, G.; Bonnetier, E.; Monard, F.; Triki, F. Inverse diffusion from knowledge of power densities, Inverse Probl. Imaging, Volume 7 (2013) no. 2, pp. 353-375 | DOI | MR | Zbl

[6] Bal, G.; Uhlmann, G. Inverse diffusion theory of photoacoustics, Inverse Problems, Volume 26 (2010) no. 8, pp. 085010 http://stacks.iop.org/0266-5611/26/i=8/a=085010 | MR | Zbl

[7] Bauman, P.; Marini, A.; Nesi, V. Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J., Volume 50 (2001) no. 2, pp. 747-757 | DOI | MR

[8] Ben Hassen, M. F.; Bonnetier, E. An asymptotic formula for the voltage potential in a perturbed ϵ-periodic composite medium containing misplaced inclusions of size ϵ, Proc. Roy. Soc. Edinburgh Sect. A, Volume 136 (2006) no. 4, pp. 669-700 | DOI | MR | Zbl

[9] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. C. Asymptotic Analysis For Periodic Structures, North-Holland Publishing Co., Amsterdam, 1978, pp. xxiv+700 | MR | Zbl

[10] Briane, M.; Milton, G. W. Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient, Arch. Rational Mech. Anal., Volume 193 (2009) no. 3, pp. 715-736 | DOI | MR | Zbl

[11] Briane, M.; Milton, G. W.; Nesi, V. Change of sign of the corrector’s determinant for homogenization in three-dimensional conductivity, Arch. Rational Mech. Anal., Volume 173 (2004) no. 1, pp. 133-150 | MR | Zbl

[12] Calderón, A.-P. On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65-73 | MR

[13] Duren, P. Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, Cambridge, 2004, pp. xii+212 | DOI | MR | Zbl

[14] Greene, R. E.; Wu, H. Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), Volume 25 (1975) no. 1, vii, pp. 215-235 | Numdam | MR | Zbl

[15] Greene, R. E.; Wu, H. Whitney’s imbedding theorem by solutions of elliptic equations and geometric consequences, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973), American Mathematical Society, Providence, R. I., 1975, pp. 287-296 | MR | Zbl

[16] Kadic, M.; Schittny, R.; Bückmann, T.; Kern, Ch.; Wegener, M. Hall-Effect Sign Inversion in a Realizable 3D Metamaterial, Phys. Rev. X, Volume 5 (2015), pp. 021030 http://link.aps.org/doi/10.1103/PhysRevX.5.021030 | DOI

[17] Koch, H.; Tataru, D. Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Comm. Pure Appl. Math., Volume 54 (2001) no. 3, pp. 339-360 | DOI | MR | Zbl

[18] Laugesen, R. S. Injectivity can fail for higher-dimensional harmonic extensions, Complex Variables Theory Appl., Volume 28 (1996) no. 4, pp. 357-369 | MR | Zbl

[19] Li, Y. Y.; Nirenberg, L. Estimates for elliptic systems from composite material, Comm. Pure Appl. Math., Volume 56 (2003), pp. 892-925 | MR | Zbl

[20] Li, Y. Y.; Vogelius, M. S. Gradient estimates for solutions of divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., Volume 153 (2000), pp. 91-151 | MR | Zbl

[21] Lipton, R.; Mengesha, T. Representation formulas for L norms of weakly convergent sequences of gradient fields in homogenization, ESAIM Math. Model. Numer. Anal., Volume 46 (2012), pp. 1121-1146 http://www.esaim-m2an.org/article_S0764583X11000495 | DOI | Numdam | MR | Zbl

[22] Monard, F.; Bal, G. Inverse diffusion problems with redundant internal information, Inverse Probl. Imaging, Volume 6 (2012) no. 2, pp. 289-313 | DOI | MR | Zbl

[23] Sylvester, G. J. Uhlmann A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), Volume 125 (1987), pp. 153-169 | MR | Zbl

[24] Wood, J. C. Lewy’s theorem fails in higher dimensions, Math. Scand., Volume 69 (1991) no. 2, pp. 166 (1992) | MR | Zbl

Cité par Sources :