Soit une variété triangulable compacte. Nous montrons que, parmi les sous-groupes de (composante connexe de l’identité du groupe des homéomorphismes de ), le sous-groupe des homéomorphismes préservant le volume est maximal.
Let be a triangulable compact manifold. We prove that, among closed subgroups of (the identity component of the group of homeomorphisms of ), the subgroup consisting of volume preserving elements is maximal.
Keywords: Transformation groups, homeomorphisms, maximal closed subgroups
Mot clés : Groupes de transformations, homéomorphismes, sous-groupes fermés maximaux
@article{JEP_2014__1__147_0, author = {Le Roux, Fr\'ed\'eric}, title = {On closed subgroups of the group of homeomorphisms of a manifold}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {147--159}, publisher = {Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.7}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.7/} }
TY - JOUR AU - Le Roux, Frédéric TI - On closed subgroups of the group of homeomorphisms of a manifold JO - Journal de l’École polytechnique - Mathématiques PY - 2014 SP - 147 EP - 159 VL - 1 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.7/ DO - 10.5802/jep.7 LA - en ID - JEP_2014__1__147_0 ER -
%0 Journal Article %A Le Roux, Frédéric %T On closed subgroups of the group of homeomorphisms of a manifold %J Journal de l’École polytechnique - Mathématiques %D 2014 %P 147-159 %V 1 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.7/ %R 10.5802/jep.7 %G en %F JEP_2014__1__147_0
Le Roux, Frédéric. On closed subgroups of the group of homeomorphisms of a manifold. Journal de l’École polytechnique - Mathématiques, Tome 1 (2014), pp. 147-159. doi : 10.5802/jep.7. http://www.numdam.org/articles/10.5802/jep.7/
[Bes04] Questions in geometric group theory, collected by M. Bestvina (2004) (http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf)
[Bro62] A mapping theorem for untriangulated manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 92-94 | MR | Zbl
[Fat80] Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup. (4), Volume 13 (1980) no. 1, pp. 45-93 | Numdam | MR | Zbl
[Ghy01] Groups acting on the circle, Enseign. Math. (2), Volume 47 (2001) no. 3-4, pp. 329-407 | MR | Zbl
[GM06] Classification of continuously transitive circle groups, Geom. Topol., Volume 10 (2006), pp. 1319-1346 | DOI | MR | Zbl
[GP75] A proof of the homeomorphism of Lebesgue-Stieltjes measure with Lebesgue measure, Proc. Amer. Math. Soc., Volume 52 (1975), pp. 196-198 | MR | Zbl
[Kir69] Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2), Volume 89 (1969), pp. 575-582 | MR | Zbl
[KT13] Homogeneous transformation groups of the sphere (2013) (arXiv:1309.0179v1)
[Nav07] Grupos de difeomorfismos del círculo, Ensaios Matemáticos, 13, Sociedade Brasileira de Matemática, Rio de Janeiro, 2007, pp. ii+249 | Zbl
[OU41] Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2), Volume 42 (1941), pp. 874-920 | MR | Zbl
[Qui82] Ends of maps. III. Dimensions and , J. Differential Geom., Volume 17 (1982) no. 3, pp. 503-521 http://projecteuclid.org/euclid.jdg/1214437139 | MR | Zbl
Cité par Sources :