Le rang du groupe de Néron-Severi d’une variété projective lisse complexe est borné par le nombre de Hodge . Les variétés satisfaisant à ont des propriétés intéressantes, mais sont assez rares, particulièrement en dimension . Dans cette note nous analysons un certain nombre d’exemples, notamment ceux construits à partir de courbes à jacobienne spéciale.
For a smooth complex projective variety, the rank of the Néron-Severi group is bounded by the Hodge number . Varieties with have interesting properties, but are rather sparse, particularly in dimension . We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.
Keywords: Algebraic surfaces, Picard group, Picard number, curve correspondences, Jacobians
Mot clés : Surfaces algébriques, groupe de Picard, nombre de Picard, correspondances de courbes, jacobiennes
@article{JEP_2014__1__101_0, author = {Beauville, Arnaud}, title = {Some surfaces with maximal {Picard} number}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {101--116}, publisher = {Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.5}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.5/} }
Beauville, Arnaud. Some surfaces with maximal Picard number. Journal de l’École polytechnique - Mathématiques, Tome 1 (2014), pp. 101-116. doi : 10.5802/jep.5. http://www.numdam.org/articles/10.5802/jep.5/
[Adl81] Some integral representations of and their applications, J. Algebra, Volume 72 (1981) no. 1, pp. 115-145 | DOI | MR | Zbl
[Aok83] On Some Arithmetic Problems Related to the Hodge Cycles on the Fermat Varieties, Math. Ann., Volume 266 (1983) no. 1, pp. 23-54 Erratum: ibid. 267 (1984) no. 4, p. 572 | DOI | MR | Zbl
[BD85] La variété des droites d’une hypersurface cubique de dimension , C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985) no. 14, pp. 703-706 | MR | Zbl
[BE87] Configurations de coniques et surfaces avec un nombre de Picard maximum, Math. Z., Volume 194 (1987) no. 2, pp. 245-258 | DOI | MR | Zbl
[Bea13] A tale of two surfaces (2013) (arXiv:1303.1910, to appear in the ASPM volume in honor of Y. Kawamata)
[Cat79] Surfaces with and their period mapping, Algebraic geometry (Copenhagen, 1978) (Lect. Notes in Math.), Volume 732, Springer, Berlin, 1979, pp. 1-29 | MR | Zbl
[CG72] The intermediate Jacobian of the cubic threefold, Ann. of Math. (2), Volume 95 (1972), pp. 281-356 | MR | Zbl
[DK93] Polar covariants of plane cubics and quartics, Advances in Math., Volume 98 (1993) no. 2, pp. 216-301 | DOI | MR | Zbl
[FSM13] Parametrization of the box variety by theta functions (2013) (arXiv:1303.6495) | MR
[Gri69] On the periods of certain rational integrals. I, II, Ann. of Math. (2), Volume 90 (1969), p. 460-495 & 496-541 | MR | Zbl
[HN65] Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan, Volume 17 (1965), pp. 1-16 | MR | Zbl
[Hof91] On positive definite Hermitian forms, Manuscripta Math., Volume 71 (1991) no. 4, pp. 399-429 | DOI | MR | Zbl
[Kat75] On the structure of singular abelian varieties, Proc. Japan Acad., Volume 51 (1975) no. 4, pp. 224-228 | MR | Zbl
[Lan75] Produkte elliptischer Kurven, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1975) no. 8, pp. 95-108 | MR | Zbl
[LB92] Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer-Verlag, Berlin, 1992, pp. viii+435 | DOI | MR | Zbl
[Liv81] On certain covers of the universal elliptic curve, Harvard University (1981) (Ph.D. Thesis ProQuest LLC, Ann Arbor, MI) | MR
[Per82] Horikawa surfaces with maximal Picard numbers, Math. Ann., Volume 259 (1982) no. 3, pp. 287-312 | DOI | MR | Zbl
[Rou09] The Fano surface of the Klein cubic threefold, J. Math. Kyoto Univ., Volume 49 (2009) no. 1, pp. 113-129 | MR | Zbl
[Rou11] Fano surfaces with 12 or 30 elliptic curves, Michigan Math. J., Volume 60 (2011) no. 2, pp. 313-329 | DOI | MR | Zbl
[Sch11] Quintic surfaces with maximum and other Picard numbers, J. Math. Soc. Japan, Volume 63 (2011) no. 4, pp. 1187-1201 http://projecteuclid.org/euclid.jmsj/1319721139 | MR | Zbl
[Shi69] Elliptic modular surfaces. I, Proc. Japan Acad., Volume 45 (1969), pp. 786-790 | Zbl
[Shi79] The Hodge conjecture for Fermat varieties, Math. Ann., Volume 245 (1979) no. 2, pp. 175-184 | DOI | MR | Zbl
[Shi81] On the Picard number of a Fermat surface, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 28 (1981) no. 3, p. 725-734 (1982) | MR | Zbl
[Sil94] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Math., 151, Springer-Verlag, New York, 1994, pp. xiv+525 | DOI | MR | Zbl
[ST10] The surface parametrizing cuboids (2010) (arXiv:1009.0388)
[Tod80] Surfaces of general type with and . I, Ann. Sci. École Norm. Sup. (4), Volume 13 (1980) no. 1, pp. 1-21 | Numdam | MR | Zbl
[Tod81] A construction of surfaces with , and . Counterexamples of the global Torelli theorem, Invent. Math., Volume 63 (1981) no. 2, pp. 287-304 | DOI | MR | Zbl
Cité par Sources :