We review the calculus of metaplectic operators and shifts in phase space applied to Gaussian wave packets. Using holomorphic extensions of this calculus, one can reduce the
@incollection{JEDP_2018____A11_0, author = {Viola, Joe}, title = {Applications of a metaplectic calculus to {Schr\"odinger} evolutions with non-self-adjoint generators}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:11}, pages = {1--11}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.671}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jedp.671/} }
TY - JOUR AU - Viola, Joe TI - Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators JO - Journées équations aux dérivées partielles N1 - talk:11 PY - 2018 SP - 1 EP - 11 PB - Groupement de recherche 2434 du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.671/ DO - 10.5802/jedp.671 LA - en ID - JEDP_2018____A11_0 ER -
%0 Journal Article %A Viola, Joe %T Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators %J Journées équations aux dérivées partielles %Z talk:11 %D 2018 %P 1-11 %I Groupement de recherche 2434 du CNRS %U https://www.numdam.org/articles/10.5802/jedp.671/ %R 10.5802/jedp.671 %G en %F JEDP_2018____A11_0
Viola, Joe. Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators. Journées équations aux dérivées partielles (2018), Exposé no. 11, 11 p. doi : 10.5802/jedp.671. https://www.numdam.org/articles/10.5802/jedp.671/
[1] Singular-value decomposition of solution operators to model evolution equations, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 8275-8288
[2] On weak and strong solution operators for evolution equations coming from quadratic operators, J. Spectr. Theory, Volume 8 (2018) no. 1, pp. 33-121 | Zbl
[3] On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 187-214
[4] A survey of the hypoelliptic Laplacian, Géométrie différentielle, physique mathématique, mathématiques et société. II (Astérisque), Volume 322, Société Mathématique de France, 2008, pp. 39-69 | Zbl
[5] Spectral decompositions and
[6]
[7] The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, 1994 | Zbl
[8] Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., Volume 219 (1995) no. 3, pp. 413-449
[9] Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys., Volume 53 (2015) no. 10, 103513, 32 pages | Zbl
[10] Lagrangian analysis and quantum mechanics. A mathematical structure related to asymptotic expansions and the Maslov index, MIT Press, 1981 (translated from the French by Carolyn Schroeder) | Zbl
[11] Differential operators admitting various rates of spectral projection growth, J. Funct. Anal., Volume 272 (2017) no. 8, pp. 3129-3175
[12] Quaternionic structure and analysis of some Kramers-Fokker-Planck operators (2018) (https://arxiv.org/abs/1807.01881)
[13] Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., Volume 12 (1974), pp. 85-130
[14] Lectures on resonances (2002) (http://www.math.polytechnique.fr/~sjoestrand/CoursgbgWeb.pdf)
[15] Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, 2005 | Zbl
[16] The norm of the non-self-adjoint harmonic oscillator semigroup, Integral Equations Oper. Theory, Volume 85 (2016) no. 4, pp. 513-538
[17] The elliptic evolution of non-self-adjoint degree-2 Hamiltonians (2017) (https://arxiv.org/abs/1701.00801)
[18] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012
Cité par Sources :