We discuss global well-posedness for the Kadomtsev-Petviashvili II in two and three space dimensions with small data. The crucial points are new bilinear estimates and the definition of the function spaces. As by-product we obtain that all solutions to small initial data scatter as .
@incollection{JEDP_2015____A4_0, author = {Koch, Herbert}, title = {Global well-posedness and scattering for small data for the {2D} and {3D} {KP-II} {Cauchy} problem}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {4}, pages = {1--9}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2015}, doi = {10.5802/jedp.633}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.633/} }
TY - JOUR AU - Koch, Herbert TI - Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem JO - Journées équations aux dérivées partielles PY - 2015 SP - 1 EP - 9 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.633/ DO - 10.5802/jedp.633 LA - en ID - JEDP_2015____A4_0 ER -
%0 Journal Article %A Koch, Herbert %T Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem %J Journées équations aux dérivées partielles %D 2015 %P 1-9 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.633/ %R 10.5802/jedp.633 %G en %F JEDP_2015____A4_0
Koch, Herbert. Global well-posedness and scattering for small data for the 2D and 3D KP-II Cauchy problem. Journées équations aux dérivées partielles (2015), article no. 4, 9 p. doi : 10.5802/jedp.633. http://www.numdam.org/articles/10.5802/jedp.633/
[1] On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., Volume 3 (1993) no. 4, pp. 315-341 | DOI | MR | Zbl
[2] On the local well-posedness of the Kadomtsev-Petviashvili II equation., Universität Dortmund (2007) (Ph. D. Thesis) | Zbl
[3] Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations, Trans. Amer. Math. Soc., Volume 360 (2008) no. 12, pp. 6555-6572 | DOI | MR | Zbl
[4] Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009) no. 3, pp. 917-941 | DOI | Numdam | MR | Zbl
[5] Erratum to “Well-posedness and scattering for the KP-II equation in a critical space”, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 27 (2010) no. 3, pp. 971-972 | DOI | Numdam | MR | Zbl
[6] The Cauchy problem for the Kadomtsev-Petviashvili (KPII) equation in three space dimensions, Comm. Partial Differential Equations, Volume 32 (2007) no. 4-6, pp. 611-641 | DOI | MR | Zbl
[7] Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations, Volume 26 (2001) no. 5-6, pp. 1027-1054 | DOI | MR | Zbl
[8] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf | MR | Zbl
[9] Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili equations, J. Nonlinear Sci., Volume 22 (2012) no. 5, pp. 763-811 | DOI | MR | Zbl
[10] Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math., Volume 58 (2005) no. 2, pp. 217-284 | DOI | MR | Zbl
[11] Dispersive Equations and Nonlinear Waves (2014)
[12] La variation d’ordre des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 36 (1976) no. 4, pp. 295-316 | MR | Zbl
[13] Differential equations driven by rough signals, Rev. Mat. Iberoamericana, Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl
[14] On the local regularity of the Kadomtsev-Petviashvili-II equation, Internat. Math. Res. Notices (2001) no. 2, pp. 77-114 | DOI | MR | Zbl
[15] Well-posedness for the Kadomtsev-Petviashvili II equation, Adv. Differential Equations, Volume 5 (2000) no. 10-12, pp. 1421-1443 | MR | Zbl
[16] On the Cauchy problem for Kadomtsev-Petviashvili equation, Comm. Partial Differential Equations, Volume 24 (1999) no. 7-8, pp. 1367-1397 | DOI | MR | Zbl
Cité par Sources :