A classical result in kinetic theory establishes that if and both belong to , then , for any compact set . Such regularity statements are known as velocity averaging lemmas and have important implications in the analysis of kinetic equations.
It was asked in [2] whether other settings of velocity averaging could produce a similar maximal gain of regularity of half a derivative. This question, motivated by an earlier work of Pierre-Emmanuel Jabin and Luis Vega [17] on the subject, turns out to be surprisingly rich and difficult, and it is, for the moment, far from being fully understood.
In this article, after recalling some classical results in the field, we survey the recent developments from [2], where new settings of velocity averaging lemmas were investigated. We also formulate a few conjectures, mainly derived from a dimensional analysis and by analogy with known results, thus delimiting the possibilities for other new settings of velocity averaging.
@article{JEDP_2015____A1_0, author = {Ars\'enio, Diogo}, title = {Recent progress in velocity averaging}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {1}, pages = {1--17}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2015}, doi = {10.5802/jedp.630}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.630/} }
Arsénio, Diogo. Recent progress in velocity averaging. Journées équations aux dérivées partielles (2015), article no. 1, 17 p. doi : 10.5802/jedp.630. http://www.numdam.org/articles/10.5802/jedp.630/
[1] Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation, Dokl. Akad. Nauk SSSR, Volume 276 (1984) no. 6, pp. 1289-1293 | MR | Zbl
[2] Maximal gain of regularity in velocity averaging lemmas (2015) (submitted for publication)
[3] Compactness in kinetic transport equations and hypoellipticity, J. Funct. Anal., Volume 261 (2011) no. 10, pp. 3044-3098 | DOI | MR | Zbl
[4] Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976, pp. x+207 (Grundlehren der Mathematischen Wissenschaften, No. 223) | MR | Zbl
[5] Régularité précisée des moyennes dans les équations de transport, Bull. Soc. Math. France, Volume 122 (1994) no. 1, pp. 29-76 | Numdam | MR | Zbl
[6] Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9), Volume 81 (2002) no. 11, pp. 1135-1159 | DOI | MR | Zbl
[7] Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math., Volume 322 (1996) no. 6, pp. 535-540 | MR | Zbl
[8] Local smoothing properties of dispersive equations, J. Amer. Math. Soc., Volume 1 (1988) no. 2, pp. 413-439 | DOI | MR | Zbl
[9] The averaging lemma, J. Amer. Math. Soc., Volume 14 (2001) no. 2, pp. 279-296 | DOI | MR | Zbl
[10] regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991) no. 3-4, pp. 271-287 | Numdam | MR | Zbl
[11] The multiplier problem for the ball, Ann. of Math. (2), Volume 94 (1971), pp. 330-336 | MR | Zbl
[12] Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Volume 76 (1988) no. 1, pp. 110-125 | DOI | MR | Zbl
[13] Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport, C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985) no. 7, pp. 341-344 | MR | Zbl
[14] Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, New York, 2008, pp. xvi+489 | MR | Zbl
[15] Modern Fourier analysis, Graduate Texts in Mathematics, 250, Springer, New York, 2009, pp. xvi+504 | DOI | MR | Zbl
[16] Averaging lemmas and the X-ray transform, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 8, pp. 505-510 | DOI | MR | Zbl
[17] A real space method for averaging lemmas, J. Math. Pures Appl. (9), Volume 83 (2004) no. 11, pp. 1309-1351 | DOI | MR | Zbl
[18] Régularité optimale des moyennes en vitesses, C. R. Acad. Sci. Paris Sér. I Math., Volume 320 (1995) no. 8, pp. 911-915 | DOI | MR | Zbl
Cité par Sources :