Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe tools to study such systems and derive a next order (beyond mean field limit) “renormalized energy" that governs microscopic patterns of points. We present the derivation of the limiting problem and the question of its minimization and its link with the Abrikosov lattice and crystallization questions. We also discuss generalizations to Riesz interaction energies and the statistical mechanics of such systems.
@article{JEDP_2014____A9_0, author = {Serfaty, Sylvia}, title = {Systems with {Coulomb} interactions}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {9}, pages = {1--23}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2014}, doi = {10.5802/jedp.112}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.112/} }
Serfaty, Sylvia. Systems with Coulomb interactions. Journées équations aux dérivées partielles (2014), article no. 9, 23 p. doi : 10.5802/jedp.112. http://www.numdam.org/articles/10.5802/jedp.112/
[ACO] G. Alberti, R. Choksi, F. Otto, Uniform Energy Distribution for an Isoperimetric Problem With Long-range Interactions. Journal Amer. Math. Soc. 22, no 2 (2009), 569-605. | MR | Zbl
[AOC] Y. Ameur, J. Ortega-Cerdà, Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates, J. Funct. Anal. 263 (2012), no. 7, 1825–1861. | MR | Zbl
[BBH] F. Bethuel, H. Brezis, F. Hélein, Ginzburg-Landau Vortices, Progress in Nonlinear Partial Differential Equations and Their Applications, Birkhäuser, 1994. | MR | Zbl
[Bec] M. E. Becker, Multiparameter groups of measure-preserving transformations: a simple proof of Wiener’s ergodic theorem. Ann Probab. 9, No 3 (1981), 504–509. | MR | Zbl
[Bet] L. Bétermin, Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere, arXiv:1404.4485.
[BEY1] P. Bourgade, L. Erdös, H.-T. Yau, Universality of general -ensembles, Duke Math. J., 163, (2014), no. 6, 1127–1190. | MR
[BEY2] P. Bourgade, L. Erdös, H. T. Yau, Bulk Universality of General -ensembles with non-convex potential, J. Math. Phys. 53 (2012), no. 9, 095221, 19 pp. | MR | Zbl
[BHS1] J. S. Brauchart, D. P. Hardin, E. B. Saff, The next order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Recent advances in orthogonal polynomials, special functions, and their applications, 31–61, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012. | MR
[BHS2] S. Borodachev, D. H. Hardin, E.B. Saff, Minimal Discrete Energy on the Sphere and Other Manifolds, forthcoming.
[BG] G. Ben Arous, A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Probab. Theory Related Fields 108 (1997), no. 4, 517–542. | MR | Zbl
[BR] F. Bethuel, T. Rivière, Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 3, 243–303. | Numdam | MR | Zbl
[BZ] G. Ben Arous, O. Zeitouni, Large deviations from the circular law. ESAIM Probab. Statist. 2 (1998), 123–174. | Numdam | MR | Zbl
[CS] L. A. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDE 32, (2007), no 7-9, 1245–1260. | MR | Zbl
[CGZ] D. Chafaï, N. Gozlan, P-A. Zitt, First order global asymptotics for confined particles with singular pair repulsion, to appear in Annals Appl. Proba. | MR
[Cho] G. Choquet, Diamètre transfini et comparaison de diverses capacités, Technical report, Faculté des Sciences de Paris, (1958).
[Dia] P.H. Diananda, Notes on two lemmas concerning the Epstein zeta-function, Proc. Glasgow Math. Assoc., 6 (1964), 202–204. | MR | Zbl
[Dy] F. Dyson, Statistical theory of the energy levels of a complex system. Part I, J. Math. Phys. 3, 140–156 (1962); Part II, ibid. 157–165; Part III, ibid. 166–175 | Zbl
[Forr] P. J. Forrester, Log-gases and random matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, 2010. | MR | Zbl
[Fro] O. Frostman, Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Mat. Sem. Univ. Lund 3, 115 s (1935).
[JLM] B. Jancovici, J. Lebowitz, G. Manificat, Large charge fluctuations in classical Coulomb systems, J. Stat. Phys. 72, no. 3-4 (1993), 773–787. | MR | Zbl
[LS] T. Leblé, S. Serfaty, Large Deviation Principle for the empirical field of log and Riesz gases, in preparation.
[LiLe] E.H. Lieb, J.L. Lebowitz, Existence of thermodynamics for real matter with Coulomb forces, Phys. Rev. Lett. 22 (1969), 631-634.
[LN] E. H. Lieb, H. Narnhofer, The thermodynamic limit for jellium. J. Statist. Phys. 12 (1975), 291–310. | MR | Zbl
[Mon] H. L. Montgomery, Minimal theta functions. Glasgow Math J. 30, (1988), No. 1, 75-85, (1988). | MR | Zbl
[PeSm] O. Penrose, E.R. Smith, Thermodynamic Limit for Classical Systems with Coulomb Interactions in a Constant External Field, Comm. Math. Phys. 26, no 1, (1972), 53–77. | MR
[PeSe] M. Petrache, S. Serfaty, Next order asymptotics and renormalized energy for Riesz interactions, arXiv:1409.7534.
[PH] D. Petz, F. Hiai, Logarithmic energy as an entropy functional, Advances in differential equations and mathematical physics, 205–221, Contemp. Math., 217, Amer. Math. Soc., Providence, RI, 1998. | MR | Zbl
[RouSe] N. Rougerie, S. Serfaty, Higher Dimensional Coulomb Gases and Renormalized Energy Functionals, to appear in Comm. Pure Appl. Math.
[RNSe] S. Rota Nodari, S. Serfaty, Renormalized energy equidistribution and local charge balance in 2D Coulomb systems, to appear in Inter. Math. Research Notices.
[SK] E. Saff, A. Kuijlaars, Distributing many points on a sphere. Math. Intelligencer 19 (1997), no. 1, 5–11. | MR | Zbl
[SaTo] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenchaften 316, Springer-Verlag, Berlin, 1997. | MR | Zbl
[SS1] E. Sandier, S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Birkhäuser, 2007. | MR | Zbl
[SS3] E. Sandier, S. Serfaty, From the Ginzburg-Landau Model to Vortex Lattice Problems, Comm. Math. Phys. 313, 635-743 (2012). | MR | Zbl
[SS4] E. Sandier, S. Serfaty, 2D Coulomb gases and the renormalized energy, to appear in Annals of Proba.
[SS5] E. Sandier, S. Serfaty, 1D Log Gases and the Renormalized Energy: Crystallization at Vanishing Temperature, to appear in Proba. Theor. Rel. Fields.
[SM] R. Sari, D. Merlini, On the -dimensional one-component classical plasma: the thermodynamic limit problem revisited. J. Statist. Phys. 14 (1976), no. 2, 91–100. | MR
[Si] B. Simon, The Christoffel-Darboux kernel, in “Perspectives in PDE, Harmonic Analysis and Applications," a volume in honor of V.G. Maz’ya’s 70th birthday, Proc. Symp. Pure Math. 79 (2008), 295–335. | MR | Zbl
[Ser] S. Serfaty, Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lecture Notes in Mathematics, Eur. Math. Soc., forthcoming, arXiv:1403.6860.
[Wi] E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math. 62 (1955), 548–564. | MR | Zbl
Cité par Sources :