In this note we describe recent results on semiclassical random walk associated to a probability density which may also concentrate as the semiclassical parameter goes to zero. The main result gives a spectral asymptotics of the close to eigenvalues. This problem was studied in [1] and relies on a general factorization result for pseudo-differential operators. In this note we just sketch the proof of this second theorem. At the end of the note, using the factorization, we give a new proof of the spectral asymptotics based on some comparison argument.
@incollection{JEDP_2014____A6_0, author = {Bony, Jean-Fran\c{c}ois and H\'erau, Fr\'ed\'eric and Michel, Laurent}, title = {Tunnel effect for semiclassical random walk}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--18}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2014}, doi = {10.5802/jedp.109}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.109/} }
TY - JOUR AU - Bony, Jean-François AU - Hérau, Frédéric AU - Michel, Laurent TI - Tunnel effect for semiclassical random walk JO - Journées équations aux dérivées partielles PY - 2014 SP - 1 EP - 18 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.109/ DO - 10.5802/jedp.109 LA - en ID - JEDP_2014____A6_0 ER -
%0 Journal Article %A Bony, Jean-François %A Hérau, Frédéric %A Michel, Laurent %T Tunnel effect for semiclassical random walk %J Journées équations aux dérivées partielles %D 2014 %P 1-18 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.109/ %R 10.5802/jedp.109 %G en %F JEDP_2014____A6_0
Bony, Jean-François; Hérau, Frédéric; Michel, Laurent. Tunnel effect for semiclassical random walk. Journées équations aux dérivées partielles (2014), article no. 6, 18 p. doi : 10.5802/jedp.109. http://www.numdam.org/articles/10.5802/jedp.109/
[1] Tunnel effect for semiclassical random walks (arXiv:1401.2935) | MR
[2] Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues, J. Eur. Math. Soc., Volume 7 (2005) no. 1, pp. 69-99 | EuDML | MR | Zbl
[3] Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, 1987, pp. x+319 | MR | Zbl
[4] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999, pp. xii+227 | MR | Zbl
[5] Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, 1988, pp. vi+107 | MR | Zbl
[6] Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach, Mat. Contemp., Volume 26 (2004), pp. 41-85 | MR | Zbl
[7] Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag, 2005, pp. x+209 | MR | Zbl
[8] Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340 | MR | Zbl
[9] Tunnel effect and symmetries for Kramers-Fokker-Planck type operators, J. Inst. Math. Jussieu, Volume 10 (2011) no. 3, pp. 567-634 | MR | Zbl
[10] Supersymmetric structures for second order differential operators, Algebra i Analiz, Volume 25 (2013) no. 2, pp. 125-154 | MR
[11] Free energy computations, Imperial College Press, 2010, pp. xiv+458 (A mathematical perspective) | MR | Zbl
[12] An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, 2002, pp. viii+190 | MR | Zbl
[13] Effet tunnel entre puits dégénérés, Comm. Partial Differential Equations, Volume 13 (1988) no. 9, pp. 1157-1187 | MR | Zbl
[14] Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, 1978, pp. xv+396 | MR | Zbl
[15] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, pp. xii+431 | MR | Zbl
Cité par Sources :