Uniform Lipschitz estimates in stochastic homogenization
Journées équations aux dérivées partielles (2014), article no. 1, 11 p.

We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining L -type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.

DOI : 10.5802/jedp.104
Classification : 35B27, 60H25, 35J20, 35J62
Mots-clés : Stochastic homogenization, Lipschitz regularity, error estimate
Armstrong, Scott 1

1 Ceremade (UMR CNRS 7534) Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France
@incollection{JEDP_2014____A1_0,
     author = {Armstrong, Scott},
     title = {Uniform {Lipschitz} estimates in stochastic homogenization},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {1},
     pages = {1--11},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2014},
     doi = {10.5802/jedp.104},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.104/}
}
TY  - JOUR
AU  - Armstrong, Scott
TI  - Uniform Lipschitz estimates in stochastic homogenization
JO  - Journées équations aux dérivées partielles
PY  - 2014
SP  - 1
EP  - 11
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.104/
DO  - 10.5802/jedp.104
LA  - en
ID  - JEDP_2014____A1_0
ER  - 
%0 Journal Article
%A Armstrong, Scott
%T Uniform Lipschitz estimates in stochastic homogenization
%J Journées équations aux dérivées partielles
%D 2014
%P 1-11
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.104/
%R 10.5802/jedp.104
%G en
%F JEDP_2014____A1_0
Armstrong, Scott. Uniform Lipschitz estimates in stochastic homogenization. Journées équations aux dérivées partielles (2014), article  no. 1, 11 p. doi : 10.5802/jedp.104. http://www.numdam.org/articles/10.5802/jedp.104/

[1] Armstrong, S. N.; Mourrat, J.-C. Lipschitz regularity for elliptic equations with random coefficients (Preprint)

[2] Armstrong, S. N.; Shen, Z. Lipschitz estimates in almost-periodic homogenization (Preprint, arXiv:1409.2094)

[3] Armstrong, S. N.; Smart, C. K. Quantitative stochastic homogenization of convex integral functionals (Preprint, arXiv:1406.0996)

[4] Avellaneda, M.; Lin, F.-H. Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., Volume 40 (1987) no. 6, pp. 803-847 | DOI | MR | Zbl

[5] Avellaneda, M.; Lin, F.-H. L p bounds on singular integrals in homogenization, Comm. Pure Appl. Math., Volume 44 (1991) no. 8-9, pp. 897-910 | DOI | MR | Zbl

[6] Dal Maso, G.; Modica, L. Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. (4), Volume 144 (1986), pp. 347-389 | DOI | MR | Zbl

[7] Dal Maso, G.; Modica, L. Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., Volume 368 (1986), pp. 28-42 | MR | Zbl

[8] Gloria, A.; Neukamm, S.; Otto, F. A regularity theory for random elliptic operators, Preprint, arXiv:1409.2678

[9] Gloria, A.; Otto, F. An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., Volume 39 (2011) no. 3, pp. 779-856 | DOI | MR | Zbl

[10] Gloria, A.; Otto, F. An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab., Volume 22 (2012) no. 1, pp. 1-28 | DOI | MR

[11] Gloria, A.; Otto, F. Quantitative results on the corrector equation in stochastic homogenization, Preprint

[12] Kozlov, S. M. The averaging of random operators, Mat. Sb. (N.S.), Volume 109(151) (1979) no. 2, p. 188-202, 327 | MR | Zbl

[13] Naddaf, A; Spencer, T. Estimates on the variance of some homogenization problems, 1998, Unpublished preprint

[14] Papanicolaou, G. C.; Varadhan, S. R. S. Boundary value problems with rapidly oscillating random coefficients, Random fields, Vol. I, II (Esztergom, 1979) (Colloq. Math. Soc. János Bolyai), Volume 27, North-Holland, Amsterdam, 1981, pp. 835-873 | MR | Zbl

[15] Yurinskiĭ, V. V. Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh., Volume 27 (1986) no. 4, p. 167-180, 215 | MR | Zbl

[16] Yurinskiĭ, V. V. Homogenization error estimates for random elliptic operators, Mathematics of random media (Blacksburg, VA, 1989) (Lectures in Appl. Math.), Volume 27, Amer. Math. Soc., Providence, RI, 1991, pp. 285-291 | MR | Zbl

Cité par Sources :