Dans cet article, nous présentons des résultats obtenus avec Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty et Jan Philip Solovej. Nous considérons un système de
This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of
Mots-clés : Hartree theory, mean-field limit, Bose-Einstein condensation, quantum de Finetti theorem
@incollection{JEDP_2013____A7_0, author = {Lewin, Mathieu}, title = {Derivation of {Hartree{\textquoteright}s} theory for mean-field {Bose} gases}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, pages = {1--21}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2013}, doi = {10.5802/jedp.103}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jedp.103/} }
TY - JOUR AU - Lewin, Mathieu TI - Derivation of Hartree’s theory for mean-field Bose gases JO - Journées équations aux dérivées partielles PY - 2013 SP - 1 EP - 21 PB - Groupement de recherche 2434 du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.103/ DO - 10.5802/jedp.103 LA - en ID - JEDP_2013____A7_0 ER -
Lewin, Mathieu. Derivation of Hartree’s theory for mean-field Bose gases. Journées équations aux dérivées partielles (2013), article no. 7, 21 p. doi : 10.5802/jedp.103. https://www.numdam.org/articles/10.5802/jedp.103/
[1] Vortices in Bose–Einstein Condensates, Progress in nonlinear differential equations and their applications, 67, Springer, 2006 | MR | Zbl
[2] Vortex patterns in a fast rotating Bose-Einstein condensate, Phys. Rev. A, Volume 71 (2005) no. 2, pp. 023611 http://link.aps.org/abstract/PRA/v71/e023611 | DOI
[3] Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates, J. Funct. Anal., Volume 241 (2006) no. 2, pp. 661-702 | MR | Zbl
[4] Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis, Annales Henri Poincaré, Volume 9 (2008), pp. 1503-1574 (10.1007/s00023-008-0393-5) | MR | Zbl
[5] Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., Volume 95 (2011) no. 6, pp. 585-626 | MR | Zbl
[6] Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., Volume 21 (1991) no. 2, pp. 139-149 | DOI | MR | Zbl
[7] On the number of bound states of a bosonic
[8] Weak coupling limit of the
[9] Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters, Volume 50 (1983), pp. 1771-1774 | DOI
[10] On the Theory of Superfluidity, J. Phys. (USSR), Volume 11 (1947), pp. 23
[11] Solution of the one-dimensional
[12] Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys., Volume 10 (1969), pp. 562-569 | MR
[13] Lectures on analysis. Vol 2. Representation theory, Mathematics lecture note series, W.A. Benjamin, Inc, New York, 1969 | Zbl
[14] One-and-a-half quantum de Finetti theorems, Comm. Math. Phys., Volume 273 (2007) no. 2, pp. 473-498 | DOI | MR | Zbl
[15] On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys., Volume 50 (2009) no. 6, pp. 062103 http://link.aip.org/link/?JMP/50/062103/1 | DOI | MR | Zbl
[16] Funzione caratteristica di un fenomeno aleatorio, Atti della R. Accademia Nazionale dei Lincei, 1931 (Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali)
[17] La prévision : ses lois logiques, ses sources subjectives, Ann. Inst. H. Poincaré, Volume 7 (1937) no. 1, pp. 1-68 | Numdam | MR | Zbl
[18] Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, Annales Henri Poincaré (2014), pp. 1-31 | DOI
[19] Finite exchangeable sequences, Ann. Probab., Volume 8 (1980) no. 4, pp. 745-764 http://www.jstor.org/stable/2242823 | MR | Zbl
[20] Classes of equivalent random quantities, Uspehi Matem. Nauk (N.S.), Volume 8 (1953) no. 2(54), pp. 125-130 | MR | Zbl
[21] Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Ration. Mech. Anal., Volume 179 (2006) no. 2, pp. 265-283 | DOI | MR | Zbl
[22] Mean field dynamics of boson stars, Comm. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 500-545 | MR | Zbl
[23] Ground-state energy of a low-density Bose gas: A second-order upper bound, Phys. Rev. A, Volume 78 (2008) no. 5, pp. 053627 | DOI
[24] Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc., Volume 22 (2009) no. 4, pp. 1099-1156 | DOI | MR | Zbl
[25] Equilibrium states for mean field models, J. Math. Phys., Volume 21 (1980) no. 2, pp. 355-358 | DOI | MR | Zbl
[26] On the mean-field limit of bosons with Coulomb two-body interaction, Commun. Math. Phys., Volume 288 (2009) no. 3, pp. 1023-1059 | DOI | MR | Zbl
[27] The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Commun. Math. Phys., Volume 66 (1979) no. 1, pp. 37-76 http://projecteuclid.org/getRecord?id=euclid.cmp/1103904940 | MR | Zbl
[28] Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., Volume 1 (1960), pp. 516-523 | MR | Zbl
[29] The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys., Volume 135 (2009) no. 5-6, pp. 915-934 | DOI | MR | Zbl
[30] Examples of bosonic de Finetti states over finite dimensional Hilbert spaces, J. Stat. Phys., Volume 121 (2005) no. 3-4, pp. 497-509 | DOI | MR | Zbl
[31] The Excitation Spectrum for Weakly Interacting Bosons in a Trap, Comm. Math. Phys., Volume 322 (2013) no. 2, pp. 559-591 | DOI | MR
[32] The wave-mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods., Proc. Camb. Phil. Soc., Volume 24 (1928), pp. 89-312
[33] The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., Volume 35 (1974) no. 4, pp. 265-277 | MR
[34] Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., Volume 80 (1955), pp. 470-501 | MR | Zbl
[35] Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A, Volume 16 (1977) no. 5, pp. 1782-1785 | MR
[36] Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 33 (1975/76) no. 4, pp. 343-351 | MR | Zbl
[37] The Hartree limit of Born’s ensemble for the ground state of a bosonic atom or ion, J. Math. Phys., Volume 53 (2012) no. 9, pp. 095223 http://link.aip.org/link/?JMP/53/095223/1 | DOI | MR
[38] Mean-field dynamics: singular potentials and rate of convergence, Commun. Math. Phys., Volume 298 (2010) no. 1, pp. 101-138 | DOI | MR | Zbl
[39] Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., Volume 260 (2011), pp. 3535-3595 | DOI | MR | Zbl
[40] Derivation of Hartree’s theory for generic mean-field Bose gases, Adv. Math., Volume 254 (2014), pp. 570-621 | DOI
[41] Fluctuations around Hartree states in the mean-field regime (2013) (arXiv eprint) | arXiv
[42] Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math., Volume in press (2013)
[43] Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), Volume 130 (1963), pp. 1616-1624 | MR | Zbl
[44] Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), Volume 130 (1963), pp. 1605-1616 | MR | Zbl
[45] Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Commun. Math. Phys., Volume 264 (2006) no. 2, pp. 505-537 | MR | Zbl
[46] The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005 | MR | Zbl
[47] Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., Volume 217 (2001) no. 1, pp. 127-163 | DOI | MR | Zbl
[48] Ground state energy of the two-component charged Bose gas., Commun. Math. Phys., Volume 252 (2004) no. 1-3, pp. 485-534 | MR | Zbl
[49] Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Physics, Volume 155 (1984) no. 2, pp. 494-512 | MR
[50] The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., Volume 112 (1987) no. 1, pp. 147-174 | MR | Zbl
[51] The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-149 | Numdam | Zbl
[52] The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223-283 | Numdam | Zbl
[53] Mean-Field games and applications (2007) (Lectures at the Collège de France, unpublished) | Zbl
[54] Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys., Volume 121 (1989) no. 2, pp. 271-282 http://projecteuclid.org/getRecord?id=euclid.cmp/1104178067 | MR | Zbl
[55] A simple derivation of mean-field limits for quantum systems, Lett. Math. Phys., Volume 97 (2011) no. 2, pp. 151-164 | MR | Zbl
[56] Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta, Volume 62 (1989) no. 8, pp. 980-1003 | MR | Zbl
[57] Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., Volume 291 (2009) no. 1, pp. 31-61 | DOI | MR | Zbl
[58] The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., Volume 306 (2011) no. 2, pp. 565-578 | DOI | MR | Zbl
[59] Disordered Bose-Einstein condensates with interaction in one dimension, J. Stat. Mech., Volume 2012 (2012) no. 11, pp. P11007 http://stacks.iop.org/1742-5468/2012/i=11/a=P11007
[60] Asymptotics for bosonic atoms, Lett. Math. Phys., Volume 20 (1990) no. 2, pp. 165-172 | DOI | MR | Zbl
[61] Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys., Volume 266 (2006) no. 3, pp. 797-818 | MR | Zbl
[62] Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Modern Phys., Volume 52 (1980) no. 3, pp. 569-615 | MR | Zbl
[63] Symmetric states of infinite tensor products of
[64] Quantum Many-Body Problem in One Dimension: Ground State, J. Mathematical Phys., Volume 12 (1971), pp. 246-250 | DOI
[65] Quantum Many-Body Problem in One Dimension: Thermodynamics, J. Mathematical Phys., Volume 12 (1971), pp. 251-256 | DOI
[66] The large deviation principle and some models of an interacting boson gas, Comm. Math. Phys., Volume 118 (1988) no. 1, pp. 61-85 http://projecteuclid.org/getRecord?id=euclid.cmp/1104161908 | MR | Zbl
[67] Large deviations and mean-field quantum systems, Quantum probability & related topics (QP-PQ, VII), World Sci. Publ., River Edge, NJ, 1992, pp. 349-381 | MR | Zbl
[68] The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., Volume 136 (2009) no. 3, pp. 453-503 | DOI | MR | Zbl
[69] The interacting Bose gas: A continuing challenge, Phys. Particles Nuclei, Volume 41 (2010), pp. 880-884 | DOI
Cité par Sources :