On étudie les propriétés statistiques des solutions des équations de Kadomstev-Petviashvili (KP-I et KP-II) sur le tore lorsque la condition initiale est une variable aléatoire. On se donne une variable aléatoire
We study the statistical properties of the solutions of the Kadomstev-Petviashvili equations (KP-I and KP-II) on the torus when the initial datum is a random variable. We give ourselves a random variable
Keywords: Wave turbulence, statistical equilibrium, random initial datum
Mot clés : Turbulence, équilibre statistique, variable initiale aléatoire
@incollection{JEDP_2013____A3_0, author = {de Suzzoni, Anne-Sophie}, title = {On the persistence of decorrelation in the theory of wave turbulence}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {3}, pages = {1--15}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2013}, doi = {10.5802/jedp.99}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jedp.99/} }
TY - JOUR AU - de Suzzoni, Anne-Sophie TI - On the persistence of decorrelation in the theory of wave turbulence JO - Journées équations aux dérivées partielles PY - 2013 SP - 1 EP - 15 PB - Groupement de recherche 2434 du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.99/ DO - 10.5802/jedp.99 LA - en ID - JEDP_2013____A3_0 ER -
%0 Journal Article %A de Suzzoni, Anne-Sophie %T On the persistence of decorrelation in the theory of wave turbulence %J Journées équations aux dérivées partielles %D 2013 %P 1-15 %I Groupement de recherche 2434 du CNRS %U https://www.numdam.org/articles/10.5802/jedp.99/ %R 10.5802/jedp.99 %G en %F JEDP_2013____A3_0
de Suzzoni, Anne-Sophie. On the persistence of decorrelation in the theory of wave turbulence. Journées équations aux dérivées partielles (2013), article no. 3, 15 p. doi : 10.5802/jedp.99. https://www.numdam.org/articles/10.5802/jedp.99/
[1] A.-S. de Suzzoni and N. Tzvetkov, On the propagation of weakly nonlinear random dispersive waves, Arch. Ration. Mech. Anal., 212, (2014), 849–874
[2] Anne-Sophie de Suzzoni, On the use of normal forms in the propagation of random waves, ArXiv e-prints (2013).
[3] Jean-Marc Delort, Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1–61. | Numdam | MR | Zbl
[4] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539-541. | Zbl
[5] A. J. Majda, D. W. McLaughlin, and E. G. Tabak, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci. 7 (1997), no. 1, 9–44. | MR | Zbl
[6] Jalal Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38 (1985), no. 5, 685–696. | MR | Zbl
[7] N. Tzvetkov, Long time bounds for the periodic KP-II equation, Int. Math. Res. Not. (2004), no. 46, 2485–2496. | MR | Zbl
[8] V.E. Zakharov and N.N. Filonenko, Weak turbulence of capillary waves, Journal of Applied Mechanics and Technical Physics 8 (1967), no. 5, 37–40.
[9] Vladimir Zakharov, Frédéric Dias, and Andrei Pushkarev, One-dimensional wave turbulence, Phys. Rep. 398 (2004), no. 1, 1–65. | MR
Cité par Sources :