Two Hartree-Fock models for the vacuum polarization
[Deux modèles de Hartree-Fock pour la polarisation du vide]
Journées équations aux dérivées partielles (2012), article no. 4, 31 p.

Nous présentons des résultats récents sur la dérivation et l’analyse de deux modèles de type Hartree-Fock pour la polarisation du vide. Nous portons une attention particulière à la construction variationnelle d’un vide polarisé auto-consistent, et à la pertinence physique de notre construction non perturbative vis-à-vis de la description perturbative donnée par l’électrodynamique quantique.

We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.

DOI : 10.5802/jedp.87
Classification : 35Q41, 49S05, 81T16, 81V10
Keywords: Vacuum polarization, Dirac sea, Hartree-Fock approximation, Bogoliubov-Dirac-Fock model, Pauli-Villars regularization, charge renormalization, quantum electrodynamics
Mot clés : Polarisation du vide, mer de Dirac, approximation de type Hartree-Fock, modèle de Bogoliubov-Dirac-Fock, régularisation de Pauli-Villars, renormalisation de la charge, électrodynamique quantique
Gravejat, Philippe 1 ; Hainzl, Christian 2 ; Lewin, Mathieu 3 ; Séré, Éric 4

1 Centre de Mathématiques Laurent Schwartz (UMR 7640) École Polytechnique F-91128 Palaiseau Cedex France
2 Mathematisches Institut Auf der Morgenstelle 10 D-72076 Tübingen Germany
3 Centre National de la Recherche Scientifique and Laboratoire de Mathématiques (UMR 8088) Université de Cergy-Pontoise F-95000 Cergy-Pontoise France
4 Centre de Recherche en Mathématiques de la Décision (UMR 7534) Université Paris-Dauphine Place du Maréchal De Lattre de Tassigny F-75775 Paris Cedex 16 France
@incollection{JEDP_2012____A4_0,
     author = {Gravejat, Philippe and Hainzl, Christian and Lewin, Mathieu and S\'er\'e, \'Eric},
     title = {Two {Hartree-Fock} models for the vacuum polarization},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {4},
     pages = {1--31},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2012},
     doi = {10.5802/jedp.87},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.87/}
}
TY  - JOUR
AU  - Gravejat, Philippe
AU  - Hainzl, Christian
AU  - Lewin, Mathieu
AU  - Séré, Éric
TI  - Two Hartree-Fock models for the vacuum polarization
JO  - Journées équations aux dérivées partielles
PY  - 2012
SP  - 1
EP  - 31
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.87/
DO  - 10.5802/jedp.87
LA  - en
ID  - JEDP_2012____A4_0
ER  - 
%0 Journal Article
%A Gravejat, Philippe
%A Hainzl, Christian
%A Lewin, Mathieu
%A Séré, Éric
%T Two Hartree-Fock models for the vacuum polarization
%J Journées équations aux dérivées partielles
%D 2012
%P 1-31
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.87/
%R 10.5802/jedp.87
%G en
%F JEDP_2012____A4_0
Gravejat, Philippe; Hainzl, Christian; Lewin, Mathieu; Séré, Éric. Two Hartree-Fock models for the vacuum polarization. Journées équations aux dérivées partielles (2012), article  no. 4, 31 p. doi : 10.5802/jedp.87. http://www.numdam.org/articles/10.5802/jedp.87/

[1] Bach, V.; Barbaroux, J.-M.; Helffer, B.; Siedentop, H. On the stability of the relativistic electron-positron field, Commun. Math. Phys., Volume 201 (1999) no. 2, pp. 445-460 | MR | Zbl

[2] Blackett, P.M.S.; Occhialini, G.P.S. Some photographs of the tracks of penetrating radiation, Proc. Roy. Soc. Lond. A, Volume 139 (1933), pp. 699-726

[3] Casimir, H.B.G. On the attraction between two perfectly conducting plates, Proc. Kon. Nederland. Akad. Wetensch., Volume 51 (1948) no. 7, pp. 793-795 | Zbl

[4] Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces, Phys. Rev., Volume 73 (1948) no. 4, pp. 360-372 | Zbl

[5] Chaix, P.; Iracane, D. From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism, J. Phys. B, Volume 22 (1989), pp. 3791-3814

[6] Chaix, P.; Iracane, D.; Lions, P.-L. From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation, J. Phys. B, Volume 22 (1989), pp. 3815-3828

[7] Dirac, P.A.M. The quantum theory of the electron, Proc. Roy. Soc. Lond. A, Volume 117 (1928), pp. 610-624

[8] Dirac, P.A.M. The quantum theory of the electron. II, Proc. Roy. Soc. Lond. A, Volume 118 (1928), pp. 351-361

[9] Dirac, P.A.M. A theory of electrons and protons, Proc. Roy. Soc. Lond. A, Volume 126 (1930), pp. 360-365

[10] Dyson, F.J. Advanced quantum mechanics, World Scientific, Hackensack, NJ, 2007 (Translated by D. Derbes) | MR | Zbl

[11] Engel, E.; Schwerdtfeger, P. Relativistic density functional theory: foundations and basic formalism, Relativistic electronic structure theory, part 1. Fundamentals (Theoretical and computational chemistry), Volume 11, Elsevier, Amsterdam, 2002, pp. 524-624

[12] Esteban, M.J.; Lewin, M.; Séré, É. Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc., Volume 45 (2008) no. 4, pp. 535-593 | MR

[13] Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems, Zts. f. Phys., Volume 61 (1930) no. 1-2, pp. 126-148

[14] Furry, W.H. A symmetry theorem in the positron theory, Phys. Rev., Volume 51 (1937) no. 2, pp. 125-129 | Zbl

[15] Gabrielse, G.; Hanneke, D.; Kinoshita, T.; Nio, M.; Odom, B. New determination of the fine structure constant from the electron g value and QED, Phys. Rev. Lett., Volume 97 (2006) no. 3, pp. 030802

[16] Gravejat, P.; Hainzl, C.; Lewin, M.; Séré, É. Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields, Preprint (2012) | MR

[17] Gravejat, P.; Lewin, M.; Séré, É. Ground state and charge renormalization in a nonlinear model of relativistic atoms, Commun. Math. Phys., Volume 286 (2009) no. 1, pp. 179-215 | MR | Zbl

[18] Gravejat, P.; Lewin, M.; Séré, É. Renormalization and asymptotic expansion of Dirac’s polarized vacuum, Commun. Math. Phys., Volume 306 (2011) no. 1, pp. 1-33 | MR | Zbl

[19] Greiner, W.; Reinhardt, J. Quantum electrodynamics, Springer-Verlag, Berlin, 2009 (Translated from the German) | MR | Zbl

[20] Hainzl, C.; Lewin, M.; Séré, É. Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation, Commun. Math. Phys., Volume 257 (2005) no. 3, pp. 515-562 | MR | Zbl

[21] Hainzl, C.; Lewin, M.; Séré, É. Self-consistent solution for the polarized vacuum in a no-photon QED model, J. Phys. A, Math. Gen., Volume 38 (2005) no. 20, pp. 4483-4499 | MR | Zbl

[22] Hainzl, C.; Lewin, M.; Séré, É. Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics, Arch. Rat. Mech. Anal., Volume 192 (2009) no. 3, pp. 453-499 | MR | Zbl

[23] Hainzl, C.; Lewin, M.; Séré, É.; Solovej, J.-P. A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics, Phys. Rev. A, Volume 76 (2007) no. 5, pp. 052104

[24] Hainzl, C.; Lewin, M.; Solovej, J.-P. The mean-field approximation in quantum electrodynamics. The no-photon case, Commun. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 546-596 | MR | Zbl

[25] Hartree, D. The wave-mechanics of an atom with a non-coulomb central field. Part I, Proc. Camb. Philos. Soc., Volume 24 (1928) no. 1, pp. 89-312

[26] Heisenberg, W. Bemerkungen zur diracschen theorie des positrons, Zts. f. Phys., Volume 90 (1934) no. 3, pp. 209-231 | Zbl

[27] Heisenberg, W.; Euler, H. Folgerungen aus der diracschen theorie des positrons, Zts. f. Phys., Volume 98 (1936) no. 11-12, pp. 714-732 | Zbl

[28] Hunziker, W.; Sigal, I.M. The quantum N-body problem, J. Math. Phys., Volume 41 (2000) no. 6, pp. 3348-3509 | MR | Zbl

[29] Lamb, W.E.; Retherford, R.C. Fine structure of the hydrogen atom by a microwave method, Phys. Rev., Volume 72 (1947) no. 3, pp. 241-243

[30] Landau, L.D. On the quantum theory of fields. Bohr Volume, Pergamon Press, Oxford, 1955 (Reprinted in Collected papers of L.D. Landau. Pergamon Press, Oxford, 1965) | MR

[31] Landau, L.D.; Pomeranchuk, I.Y. On point interaction in quantum electrodynamics, Dokl. Akad. Nauk SSSR (N.S.), Volume 102 (1955), pp. 489-492 | MR | Zbl

[32] Lewin, M.; Exner, P. Renormalization of Dirac’s polarized vacuum, Mathematical results in quantum physics (Proceedings of the QMath11 Conference), World Scientific (2011), pp. 45-59 | MR | Zbl

[33] Lewin, M. A nonlinear variational problem in relativistic quantum mechanics, Proceeding of the sixth European Congress of Mathematics, European Mathematical Society (2013)

[34] Lieb, E.H. Variational principles for many-fermion systems, Phys. Rev. Lett., Volume 46 (1981) no. 7, pp. 457-459 | MR

[35] Lieb, E.H. Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A, Volume 29 (1984) no. 6, pp. 3018-3028

[36] Mandelshtam, L.I.; Tamm, I.E. The uncertainty relation between energy and time in nonrelativistic quantum mechanics, J. of Phys. (USSR), Volume 9 (1945), pp. 249-254 | MR | Zbl

[37] Nenciu, G.; Scharf, G. On regular external fields in quantum electrodynamics, Helv. Phys. Acta, Volume 51 (1978) no. 3, pp. 412-424 | MR

[38] Pauli, W.; Rose, M.E. Remarks on the polarization effects in the positron theory, Phys. Rev., Volume 49 (1936) no. 6, pp. 462-465

[39] Pauli, W.; Villars, F. On the invariant regularization in relativistic quantum theory, Rev. Modern Phys., Volume 21 (1949), pp. 434-444 | MR | Zbl

[40] Peskin, M.E.; Schroeder, D.V. An introduction to quantum field theory, Frontiers in Physics, 94, Westview Press, New-York, 1995 | MR

[41] Reed, M.; Simon, B. Methods of modern mathematical physics IV. Analysis of operators, Texts and Monographs in Physics, Academic Press, New-York, 1980 | MR | Zbl

[42] Sabin, J. Static electron-positron pair creation in strong fields for a nonlinear Dirac model, Preprint (2001)

[43] Schwinger, J. Quantum electrodynamics. I. A covariant formulation, Phys. Rev., Volume 74 (1948) no. 10, pp. 1439-1461 | MR | Zbl

[44] Serber, R. Linear modifications in the Maxwell field equations, Phys. Rev., Volume 48 (1935) no. 1, pp. 49-54

[45] Serber, R. A note on positron theory and proper energies, Phys. Rev., Volume 49 (1936) no. 7, pp. 545-550

[46] Solovej, J.-P. Proof of the ionization conjecture in a reduced Hartree-Fock model, Invent. Math., Volume 104 (1991) no. 2, pp. 291-311 | MR | Zbl

[47] Solovej, J.-P. The ionization conjecture in Hartree-Fock theory, Annals of Math., Volume 158 (2003) no. 2, pp. 509-576 | MR | Zbl

[48] Thaller, B. The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 | MR | Zbl

[49] Uehling, E.A. Polarization effects in the positron theory, Phys. Rev., Volume 48 (1935) no. 1, pp. 55-63 | Zbl

Cité par Sources :