Formation of Singularities in Fluid Interfaces
Journées équations aux dérivées partielles (2012), article no. 2, 9 p.
@article{JEDP_2012____A2_0,
     author = {Fefferman, Charles},
     title = {Formation of {Singularities} in {Fluid} {Interfaces}},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {2},
     pages = {1--9},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2012},
     doi = {10.5802/jedp.85},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.85/}
}
TY  - JOUR
AU  - Fefferman, Charles
TI  - Formation of Singularities in Fluid Interfaces
JO  - Journées équations aux dérivées partielles
PY  - 2012
SP  - 1
EP  - 9
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.85/
DO  - 10.5802/jedp.85
LA  - en
ID  - JEDP_2012____A2_0
ER  - 
%0 Journal Article
%A Fefferman, Charles
%T Formation of Singularities in Fluid Interfaces
%J Journées équations aux dérivées partielles
%D 2012
%P 1-9
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.85/
%R 10.5802/jedp.85
%G en
%F JEDP_2012____A2_0
Fefferman, Charles. Formation of Singularities in Fluid Interfaces. Journées équations aux dérivées partielles (2012), article  no. 2, 9 p. doi : 10.5802/jedp.85. http://www.numdam.org/articles/10.5802/jedp.85/

[1] Alazard, T.; Burq, N.; Zuilly, C. On the water-wave equations with surface tension, Duke Math. J., Volume 158 no. 3, pp. 413-499 | MR | Zbl

[2] Ambrose, D. M.; Masmoudi, N. The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math., Volume 58 no. 10, pp. 1287-1315 | MR | Zbl

[3] Alvarez-Samaniego, B.; Lannes, D. Large time existence for 3D water waves and asympotics, Invent. Math., Volume 171 no. 3, pp. 485-541 | MR | Zbl

[4] Bertozzi, A.; Constantin, P. Global regularity for vortex patches, Comm. Pure Appl. Math., Volume 152 no. 1, pp. 19-28 | MR | Zbl

[5] Beale, J. T.; Hou, T. Y.; Lowengrub, J. Convergence of a boundary integral method for water waves, SIAM J. Numer. Anal., Volume 33 no. 5, pp. 1797-1843 | MR | Zbl

[6] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F.; Gomez-Serrano, J. Finite time singularities for the free boundary incompressible Euler equations (preprint)

[7] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F.; Gomez-Serrano, J. Finite time singularities for water waves with surface tension (preprint)

[8] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F.; Lopez-Fernandez, M. Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Annals of Math., Volume 175, pp. 909-948 | MR | Zbl

[9] Castro, A.; Cordoba, D.; Fefferman, C.; Gancedo, F. Breakdown of smoothness for the Muskat problem (preprint)

[10] Cordoba, A.; Cordoba, D.; Gancedo, F. Interface evolution: Water waves in 2D, Adv. Math., Volume 223 no. 1, pp. 120-173 | Zbl

[11] Constantin, P.; Cordoba, D.; Gancedo, F.; Strain, R. On the global existence for the Muskat problem, JEMS, Volume 15 no. 1, pp. 201-227 | DOI | EuDML | MR | Zbl

[12] Cordoba, D.; Fontelos, M.; Mancho, A.; Rodrigo, J. L. Evidence of singularities for a family of contour dynamics equations, Proc. Nat. Acad. Sci. USA, Volume 102, pp. 5949-5952 | MR | Zbl

[13] Cordoba, D.; Gancedo, F. Contour dynamics of incompressible 3D fluids in a porous medium with different densities, Comm. Math. Phys., Volume 273 no. 2, pp. 445-471 | MR | Zbl

[14] Chemin, J. Y. Persistance de structures géometriques dans les fluides incompressibles bidimensionels, Ann. École Norm. Sup., Volume 26, pp. 1-16 | Numdam | MR | Zbl

[15] Caflisch, R.; Howison, S.; Siegel, M. Global existence, singular solutions and ill-posedness for the Muskat problem, Comm. Pure Appl. Math, Volume 57, pp. 1374-1411 | MR | Zbl

[16] Christodoulou, D.; Lindblad, H. On the motion of the free surface of a liquid, Comm. Pure Appl. Math., Volume 53 no. 12, pp. 1536-1602 | MR | Zbl

[17] Constantin, P.; Pugh, M. Global solutions for small data to the Hele-Shaw problem, Nonlinearity, Volume 6, pp. 393-415 | MR | Zbl

[18] Coutand, D.; Shkoller, S. On the finite-time splash singularity for the 3D free surface Euler equqations (preprint)

[19] Coutand, D.; Shkoller, S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Volume 20 no. 3, pp. 829-930 | MR | Zbl

[20] Escher, J.; Matioc, B-V. On the parabolicity of the Muskat problem: Well-posedness, fingering and stability results, Z. Annal. Awend, Volume 30, pp. 193-218 | MR | Zbl

[21] Gancedo, F. Existence for the α-patch model and the QG sharp front in Sobolev spaces, Adv. Math., Volume 217, pp. 2569-2598 | MR | Zbl

[22] Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3, Annals of Math. | Zbl

[23] Lannes, D. Well-posedness of the water-waves equation, J. Amer. Math. Soc., Volume 18 no. 3, pp. 605-654 | MR | Zbl

[24] Lindblad, H. Well-posedness for the motion of an incompressible liquid with free surface boundary, Annals of Math., Volume 162, pp. 109-194 | MR | Zbl

[25] Rodrigo, J. On the evolution of sharp fronts for the quasigeostrophic equation, Comm. Pure Appl. Math., Volume 58 no. 6, pp. 821-866 | MR | Zbl

[26] Shatah, J.; Zeng, C. Geometry and a-priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math, Volume 61 no. 5, pp. 698-744 | MR | Zbl

[27] Wu, S. Almost global well-posedness of the 2D full water wave problem, Invent. Math., Volume 177 no. 1, pp. 45-135 | Zbl

[28] Wu, S. Global well-posedness of the 3D full water-wave problem, Invent. Math., Volume 184 no. 1, pp. 125-220 | Zbl

[29] Wu, S. Well-posedness in Sobolev spaces of the full water-wave problem in 2D, Invent. Math., Volume 177, pp. 39-72 | MR | Zbl

[30] Wu, S. Well-posedness in Sobolev spaces of the full water-wave problem in 3D, J. Amer. Math. Soc., Volume 12 no. 2, pp. 445-495 | MR | Zbl

[31] Yi, F. Global classical solution of Muskat free boundary problem, J. Math. Anal. Appl., Volume 288, pp. 442-461 | MR | Zbl

[32] Zhang, P.; Zhang, Z. On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math, Volume 61, pp. 877-940 | MR | Zbl

Cité par Sources :