We investigate the spectral distribution of the damped wave equation on a compact Riemannian manifold, especially in the case of a metric of negative curvature, for which the geodesic flow is Anosov. The main application is to obtain conditions (in terms of the geodesic flow on
@incollection{JEDP_2011____A9_0, author = {Nonnenmacher, St\'ephane}, title = {Spectral theory of damped quantum chaotic systems}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {9}, pages = {1--23}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2011}, doi = {10.5802/jedp.81}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jedp.81/} }
TY - JOUR AU - Nonnenmacher, Stéphane TI - Spectral theory of damped quantum chaotic systems JO - Journées équations aux dérivées partielles PY - 2011 SP - 1 EP - 23 PB - Groupement de recherche 2434 du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.81/ DO - 10.5802/jedp.81 LA - en ID - JEDP_2011____A9_0 ER -
Nonnenmacher, Stéphane. Spectral theory of damped quantum chaotic systems. Journées équations aux dérivées partielles (2011), article no. 9, 23 p. doi : 10.5802/jedp.81. https://www.numdam.org/articles/10.5802/jedp.81/
[Anan08] N. Anantharaman, Entropy and the localization of eigenfunctions, Ann. Math. (2) 168, 435–475 (2008) | MR | Zbl
[Anan10] N. Anantharaman, Spectral deviations for the damped wave equation, GAFA 20 (2010) 593–626 | MR | Zbl
[AN1] N. Anantharaman and S. Nonnenmacher, Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier 57(7), 2465–2523 (2007) | EuDML | Numdam | MR | Zbl
[AschLeb] M. Asch and G. Lebeau, The Spectrum of the Damped Wave Operator for a Bounded Domain in
[Bro10] S. Brooks, On the entropy of quantum limits for 2-dimensional cat maps, Commun. Math. Phys. 293 (2010) 231–255 | MR | Zbl
[Bur98] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonances au voisinage du réel, Acta Math. 180 (1998) 1–29 | MR | Zbl
[BuHi07] N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett. 14 (2007) 35-47 | MR | Zbl
[Chris07] H. Christianson, Semiclassical Non-concentration near Hyperbolic Orbits, J. Funct. Anal. 246 (2007) 145–195; Corrigendum, J. Funct. Anal. 258 (2010) 1060–1065 | MR | Zbl
[Chris09] H. Christianson, Applications of Cutoff Resolvent Estimates to the Wave Equation, Math. Res. Lett. Vol. 16 (2009) 577–590 | MR | Zbl
[Chris11] H. Christianson, Quantum Monodromy and Non-concentration Near a Closed Semi-hyperbolic Orbit, Trans. Amer. Math. Soc. 363 (2011) 3373–3438 | MR
[EvZw] C.L. Evans and M. Zworski, Lectures on semiclassical analysis, v.0.75
[Hit03] M.Hitrik, Eigenfrequencies and expansions for damped wave equations, Meth. Appl. Anal. 10 (2003) 1–22 | MR | Zbl
[HitSjo08] M. Hitrik and J. Sjöstrand, Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2, Ann. Sci. E.N.S. 41 (2008) 511-571 | Numdam | MR | Zbl
[HitSjo11] M. Hitrik and J. Sjöstrand, Diophantine tori and Weyl laws for non-selfadjoint operators in dimension two, preprint 2011, arXiv:1102.0889
[HSVN07] M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators, Amer. J. Math. 129 (2007) 105-182 | MR | Zbl
[KatHas95] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge UP, 1995 | MR | Zbl
[Kif90] Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc. 321 (1990) 505–524. | MR | Zbl
[KoTa94] H. Koch and D. Tataru, On the spectrum of hyperbolic semigroups, Comm. Partial Differential Equations, 20, No 5-6, 901-937 (1995) | MR | Zbl
[Leb93] G.Lebeau, Equation des ondes amorties, Algebraie and geometric methods in mathematical physics, (Kaciveli 1993), 73-109, Math. Phys. Stud. 19, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl
[MarMat84] A.S. Markus and V.I. Matsaev, Comparison theorems for spectra of linear operators, and spectral asymptotics, Trans. Moscow Math. Soc. (1984) 139–187. Russian original in Trudy Moscow. Obshch. 45 (1982), 133-181 | MR | Zbl
[NZ2] S. Nonnenmacher and M. Zworski, Quantum decay rates in chaotic scattering, Acta Math 203 (2009) 149–233 | MR
[NZ3] S. Nonnenmacher and M. Zworski, Semiclassical Resolvent Estimates in Chaotic Scattering, Appl. Math. Res. eXpr. 2009, Article ID abp003 | MR | Zbl
[RauTay75] J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Commun. Pure Appl. Math. 28 (1975) 501-523 | MR | Zbl
[Ren94] M. Renardy, On the linear stability of hyperbolic PDEs and viscoelastic flows, Zeit. f. angew. Math. Phys. 45 (1994) 854-865 | MR | Zbl
[Riv10] G. Rivière, Entropy of semiclassical measures in dimension 2, Duke Math. J. 155 (2010) 271-335 | MR
[Riv11] G. Rivière, Delocalization of slowly damped eigenmodes on Anosov manifolds, preprint 2011
[Sche10] E. Schenck, Energy decay for the damped wave equation under a pressure condition, Commun. Math. Phys. 300, 375–410 (2010) | MR | Zbl
[Sche11] E. Schenck, Exponential stabilization without geometric control, preprint 2010 | MR
[Sjo00] J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci. 36 (2000) 573-611 | MR | Zbl
[SjoZwo07] J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137 (2007) 381–459 | MR | Zbl
[Zel09] S. Zelditch, Recent developments in mathematical quantum chaos, in Current Developments in Mathematics, 2009, D.Jerison, B.Mazur, T.Mrowka, W.Schmid, R.Stanley, S-T Yau (eds.), International Press 2009
Cité par Sources :