In this article we survey some recent results in the regularity theory of admissible solutions to hyperbolic conservation laws and Hamilton-Jacobi equations.
@incollection{JEDP_2010____A6_0, author = {De Lellis, Camillo}, title = {Hyperbolic equations and {SBV} functions}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--10}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2010}, doi = {10.5802/jedp.63}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.63/} }
TY - JOUR AU - De Lellis, Camillo TI - Hyperbolic equations and SBV functions JO - Journées équations aux dérivées partielles PY - 2010 SP - 1 EP - 10 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.63/ DO - 10.5802/jedp.63 LA - en ID - JEDP_2010____A6_0 ER -
De Lellis, Camillo. Hyperbolic equations and SBV functions. Journées équations aux dérivées partielles (2010), article no. 6, 10 p. doi : 10.5802/jedp.63. http://www.numdam.org/articles/10.5802/jedp.63/
[1] Alberti, G., and Ambrosio, L. A geometrical approach to monotone functions in . Math. Z. 230, 2 (1999), 259–316. | MR | Zbl
[2] Ambrosio, L., and De Lellis, C. A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations. J. Hyperbolic Differ. Equ. 1, 4 (2004), 813–826. | MR | Zbl
[3] Ambrosio, L., De Lellis, C., and Malý, J. On the chain rule for the divergence of BV-like vector fields: applications, partial results, open problems. In Perspectives in nonlinear partial differential equations, vol. 446 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 31–67. | MR
[4] Ambrosio, L., Fusco, N., and Pallara, D. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. | MR | Zbl
[5] Ancona, F., and Coclite, G. M. On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43, 6 (2005), 2166–2190 (electronic). | MR | Zbl
[6] Ancona, F., and Marson, A. On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36, 1 (1998), 290–312 (electronic). | MR | Zbl
[7] Ancona, F., and Marson, A. Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point. In Control methods in PDE-dynamical systems, vol. 426 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 1–43. | MR | Zbl
[8] Ancona, F., and Nguyen, K. T. SBV regularity for solutions to genuinely nonlinear Temple systems of balance laws. In preparation.
[9] Bianchini, S., and Caravenna, L. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws. In preparation.
[10] Bianchini, S., De Lellis, C., and Robyr, R. SBV regularity for Hamilton-Jacobi equations in . To appear in Arch. Rat. Mech. Anal. (2010).
[11] Bressan, A. Hyperbolic systems of conservation laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. | MR | Zbl
[12] Bressan, A., and Marson, A. A maximum principle for optimally controlled systems of conservation laws. Rend. Sem. Mat. Univ. Padova 94 (1995), 79–94. | Numdam | Zbl
[13] Bressan, A., and Shen, W. Optimality conditions for solutions to hyperbolic balance laws. In Control methods in PDE-dynamical systems, vol. 426 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 129–152. | MR
[14] Cannarsa, P., and Sinestrari, C. Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA, 2004. | MR | Zbl
[15] Dafermos, C. M. Hyperbolic conservation laws in continuum physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2000. | MR | Zbl
[16] Dafermos, C. M. Wave fans are special. Acta Math. Appl. Sin. Engl. Ser. 24, 3 (2008), 369–374. | MR | Zbl
[17] De Giorgi, E., and Ambrosio, L. New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82, 2 (1988), 199–210 (1989). | MR | Zbl
[18] Evans, L. C. Partial differential equations, vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998. | MR | Zbl
[19] Robyr, R. SBV regularity of entropy solutions for a class of genuinely nonlinear scalar balance laws with non-convex flux function. J. Hyperbolic Differ. Equ. 5, 2 (2008), 449–475. | MR | Zbl
[20] Tonon, D. Personal communication..
Cité par Sources :