We consider the dynamics of an interface given by two incompressible fluids with different characteristics evolving by Darcy’s law. This scenario is known as the Muskat problem, being in 2D mathematically analogous to the two-phase Hele-Shaw cell. The purpose of this paper is to outline recent results on local existence, weak solutions, maximum principles and global existence.
@incollection{JEDP_2010____A5_0, author = {Castro, Angel and C\'ordoba, Diego and Gancedo, Francisco}, title = {Some recent results on the {Muskat} problem}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {5}, pages = {1--14}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2010}, doi = {10.5802/jedp.62}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.62/} }
TY - JOUR AU - Castro, Angel AU - Córdoba, Diego AU - Gancedo, Francisco TI - Some recent results on the Muskat problem JO - Journées équations aux dérivées partielles PY - 2010 SP - 1 EP - 14 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.62/ DO - 10.5802/jedp.62 LA - en ID - JEDP_2010____A5_0 ER -
%0 Journal Article %A Castro, Angel %A Córdoba, Diego %A Gancedo, Francisco %T Some recent results on the Muskat problem %J Journées équations aux dérivées partielles %D 2010 %P 1-14 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.62/ %R 10.5802/jedp.62 %G en %F JEDP_2010____A5_0
Castro, Angel; Córdoba, Diego; Gancedo, Francisco. Some recent results on the Muskat problem. Journées équations aux dérivées partielles (2010), article no. 5, 14 p. doi : 10.5802/jedp.62. http://www.numdam.org/articles/10.5802/jedp.62/
[1] D. Ambrose. Well-posedness of Two-phase Hele-Shaw Flow without Surface Tension. Euro. Jnl. of Applied Mathematics 15 597-607, 2004. | MR | Zbl
[2] G. Baker, D. Meiron and S. Orszag. Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123 477-501, 1982. | MR | Zbl
[3] J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972. | Zbl
[4] A. L. Bertozzi and P. Constantin. Global regularity for vortex patches. Comm. Math. Phys. 152 (1), 19-28, 1993. | MR | Zbl
[5] R. Caflisch and O. Orellana. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal. 20 (2): 293-307, 1989. | MR | Zbl
[6] A. Castro, D. Córdoba, C. Fefferman, F. Gancedo and M. Lopez. Rayleigh-Taylor breakdown for the Muskat problem. Preprint.
[7] P. Constantin, D. Córdoba, F. Gancedo and R.M. Strain. On the global existence for the for the Muskat problem. ArXiv:1007.3744.
[8] P. Constantin and M. Pugh. Global solutions for small data to the Hele-Shaw problem. Nonlinearity, 6 (1993), 393 - 415. | MR | Zbl
[9] A. Córdoba, D. Córdoba and F. Gancedo. Interface evolution: the Hele-Shaw and Muskat problems. Preprint 2008, ArXiv:0806.2258. To appear in Annals of Math.
[10] D. Córdoba and F. Gancedo. Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273, 2, 445-471 (2007). | MR | Zbl
[11] D. Córdoba and F. Gancedo. A maximum principle for the Muskat problem for fluids with different densities. Comm. Math.Phys., 286 (2009), no. 2, 681-696. | MR | Zbl
[12] D. Córdoba, F. Gancedo and R. Orive. A note on the interface dynamics for convection in porous media. Physica D, 237 (2008), 1488-1497. | MR | Zbl
[13] D. Córdoba and F. Gancedo. Absence of squirt singularities for the multi-phase Muskat problem. Comm. Math. Phys., 299, 2, (2010), 561-575.
[14] J. Escher and G. Simonett. Classical solutions for Hele-Shaw models with surface tension. Adv. Differential Equations, 2:619-642, 1997. | MR | Zbl
[15] J. Escher and B.-V. Matioc. On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results. ArXiv:1005.2512.
[16] J. Escher, A.-V. Matioc and B.-V. Matioc: A generalised Rayleigh-Taylor condition for the Muskat problem. Arxiv:1005.2511.
[17] M. Muskat. The flow of homogeneous fluids through porous media. New York, Springer 1982.
[18] L. Nirenberg. An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Differential Geometry, 6 561-576, 1972. | MR | Zbl
[19] T. Nishida. A note on a theorem of Nirenberg. J. Differential Geometry, 12 629-633, 1977. | MR | Zbl
[20] Lord Rayleigh (J.W. Strutt), On the instability of jets. Proc. Lond. Math. Soc. 10, 413, 1879.
[21] P.G. Saffman and Taylor. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. London, Ser. A 245, 312-329, 1958. | MR | Zbl
[22] M. Siegel, R. Caflisch and S. Howison. Global Existence, Singular Solutions, and Ill-Posedness for the Muskat Problem. Comm. Pure and Appl. Math., 57, 1374-1411, 2004. | MR | Zbl
[23] F. Yi. Local classical solution of Muskat free boundary problem. J. Partial Diff. Eqs., 9 (1996), 84-96. | MR | Zbl
[24] F. Yi. Global classical solution of Muskat free boundary problem. J. Math. Anal. Appl., 288 (2003), 442-461. | MR | Zbl
Cité par Sources :