We study a class of third order hyperbolic operators in with triple characteristics on . We consider the case when the fundamental matrix of the principal symbol for has a couple of non vanishing real eigenvalues and is strictly hyperbolic for We prove that is strongly hyperbolic, that is the Cauchy problem for is well posed in for any lower order terms .
@article{JEDP_2010____A4_0, author = {Bernardi, Enrico and Bove, Antonio and Petkov, Vesselin}, title = {Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {4}, pages = {1--13}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2010}, doi = {10.5802/jedp.61}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.61/} }
TY - JOUR AU - Bernardi, Enrico AU - Bove, Antonio AU - Petkov, Vesselin TI - Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity JO - Journées équations aux dérivées partielles PY - 2010 SP - 1 EP - 13 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.61/ DO - 10.5802/jedp.61 LA - en ID - JEDP_2010____A4_0 ER -
%0 Journal Article %A Bernardi, Enrico %A Bove, Antonio %A Petkov, Vesselin %T Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity %J Journées équations aux dérivées partielles %D 2010 %P 1-13 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.61/ %R 10.5802/jedp.61 %G en %F JEDP_2010____A4_0
Bernardi, Enrico; Bove, Antonio; Petkov, Vesselin. Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity. Journées équations aux dérivées partielles (2010), article no. 4, 13 p. doi : 10.5802/jedp.61. http://www.numdam.org/articles/10.5802/jedp.61/
[1] E. Bernardi, A. Bove, V. Petkov, The Cauchy problem for effectively hyperbolic operators with triple characteristics, in preparation.
[2] J. M. Bony, Sur l’inégalité de Fefferman-Phong, Séminaire EDP, Ecole Polytechnique, 1998-1999. | Numdam | MR
[3] J. Chazarain, Opérateurs hyperboliques à caractéristiques de multiplicité constante, Ann. Institut Fourier (Grenoble), 24 (1974), 173-202. | Numdam | MR | Zbl
[4] H. Flashka and G. Strang, The correctness of the Cauchy problem, Adv. in Math. 6 (1971), 347-379. | MR | Zbl
[5] L. Hörmander, Cauchy problem for differential operators with double characteristics, J. Analyse Math. 32 (1977), 118-196. | MR | Zbl
[6] L. Hörmander, Analysis of Linear Partial Differential Operators, III, Springer-Verlag, 1985, Berlin. | MR | Zbl
[7] V. Ja. Ivrii and V. M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperboilic equations to be well posed, Uspehi Mat. Nauk, 29: 5 (1974), 1-70 (in Russian), English translation: Russian Math. Surveys, 29:5 (1974), 3-70. | MR | Zbl
[8] V. Ivrii, Sufficient conditions for regular and completely regular hyperbolicity, Trudy Moskov Mat. Obsc.,33 (1976), 3-66 (in Russian), English translation: Trans. Moscow Math. Soc. 1 (1978), 165. | MR | Zbl
[9] N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (a standard type), Publ. RIMS Kyoto Univ. 20 (1984), 551-592. | MR
[10] N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (general case), J. Math. Kyoto Univ. 25 (1985), 727-743. | MR | Zbl
[11] R. Melrose, The Cauchy problem for effectively hyperbolic operators, Hokkaido Math. J. 12 (1983), 371-391. | MR | Zbl
[12] T. Nishitani, Local energy integrals for effectively hyperbolic operators, I, II, J. Math. Kyoto Univ. 24 (1984), 623-658 and 659-666. | MR | Zbl
[13] T. Nishitani, The effectively Cauchy problem in The Hyperbolic Cauchy Problem, Lecture Notes in Mathematics, 1505, Springer-Verlag, 1991, pp. 71-167. | MR
[14] O. A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math. 23 (1970), 569-586. | MR
[15] M. R. Spiegel, J. Liu, Mathematical handbook of formulas and tables, McGraw-Hill, Second Edition, 1999.
Cité par Sources :