We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure
@incollection{JEDP_2010____A15_0, author = {Rivi\`ere, Gabriel}, title = {Entropy of eigenfunctions of the {Laplacian} in dimension 2}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {15}, pages = {1--17}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2010}, doi = {10.5802/jedp.72}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jedp.72/} }
TY - JOUR AU - Rivière, Gabriel TI - Entropy of eigenfunctions of the Laplacian in dimension 2 JO - Journées équations aux dérivées partielles PY - 2010 SP - 1 EP - 17 PB - Groupement de recherche 2434 du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.72/ DO - 10.5802/jedp.72 LA - en ID - JEDP_2010____A15_0 ER -
%0 Journal Article %A Rivière, Gabriel %T Entropy of eigenfunctions of the Laplacian in dimension 2 %J Journées équations aux dérivées partielles %D 2010 %P 1-17 %I Groupement de recherche 2434 du CNRS %U https://www.numdam.org/articles/10.5802/jedp.72/ %R 10.5802/jedp.72 %G en %F JEDP_2010____A15_0
Rivière, Gabriel. Entropy of eigenfunctions of the Laplacian in dimension 2. Journées équations aux dérivées partielles (2010), article no. 15, 17 p. doi : 10.5802/jedp.72. https://www.numdam.org/articles/10.5802/jedp.72/
[1] L.M. Abramov On the entropy of a flow, Translations of AMS
[2] N. Anantharaman Entropy and the localization of eigenfunctions, Ann. of Math.
[3] N. Anantharaman, H. Koch, S. Nonnenmacher Entropy of eigenfunctions, arXiv:0704.1564, International Congress of Mathematical Physics (2007) | Zbl
[4] N. Anantharaman, S. Nonnenmacher Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier
[5] D. Bambusi, S. Graffi, T. Paul Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymp. Analysis
[6] L. Barreira, Y. Pesin Lectures on Lyapunov exponents and smooth ergodic theory, Proc. of Symposia in Pure Math.
[7] A. Bouzouina, S. de Bièvre Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. in Math. Phys.
[8] A. Bouzouina, D. Robert Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. Jour.
[9] N. Burq Mesures semi-classiques et mesures de défaut (d’après P.Gérard, L.Tartar et al.) Astérisque
[10] Y. Colin de Verdière Ergodicité et fonctions propres du Laplacien, Comm. in Math. Phys.
[11] M. Denker, C. Grillenberger, K. Sigmund Ergodic Theory on Compact Spaces, Springer, Berlin-Heidelberg-New-York (1976) | MR | Zbl
[12] M. Dimassi, J. Sjöstrand Spectral Asymptotics in the Semiclassical Limit Cambridge University Press (1999) | MR | Zbl
[13] F. Faure, S. Nonnenmacher, S. de Bièvre Scarred eigenstates for quantum cat maps of minimal periods, Comm. in Math. Phys.
[14] B. Gutkin Entropic bounds on semiclassical measures for quantized one-dimensional maps, Comm. Math. Physics
[15] B. Hasselblatt, A. B. Katok Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its applications
[16] D. Kelmer Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, Ann. of Math.
[17] F. Ledrappier, L.-S. Young The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math.
[18] H. Maassen, J.B. Uffink Generalized entropic uncertainty relations, Phys. Rev. Lett.
[19] G. Rivière Entropy of semiclassical measures in dimension 2, to appear in Duke Math. Jour., hal-00315799 (2008)
[20] G. Rivière Entropy of semiclassical measures for nonpositively curved surfaces, hal-00430591 (2009)
[21] Z. Rudnick, P. Sarnak The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. in Math. Phys.
[22] D. Ruelle An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat.
[23] R. O. Ruggiero Dynamics and global geometry of manifolds without conjugate points, Ensaios Mate.
[24] A. Shnirelman Ergodic properties of eigenfunctions, Usp. Math. Nauk.
[25] P. Walters An introduction to ergodic theory, Springer-Verlag, Berlin, New York (1982) | MR | Zbl
[26] L.-S. Young Dimension, entropy and Lyapunov exponents, Ergodic theory and Dynamical systems
[27] S. Zelditch Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour.
Cité par Sources :