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GDR 2434 (CNRS)

Around the bounded L2 curvature conjecture in
general relativity

Sergiu Klainerman Igor Rodnianski Jeremie Szeftel

Abstract
We report on recent progress obtained on the construction and control

of a parametrix to the homogeneous wave equation �gφ = 0, where g is a
rough metric satisfying the Einstein vacuum equations. Controlling such a
parametrix as well as its error term when one only assumes L2 bounds on the
curvature tensor R of g is a major step towards the proof of the bounded L2

curvature conjecture.

1. Introduction

1.1. Einstein vacuum equations
We start by introducing Einstein vacuum equations. We consider a Lorentzian mani-
fold (M,g), i.e.M is four-dimensional, and g is a bilinear form on the tangent space
ofM with signature (−,+,+,+). To g one can associate its Levi-Civita connection
D. Its curvature tensor R is then defined as:

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z,

where X, Y, Z denote three vectorfields onM. The curvature tensor is a four-tensor
and satisfies several algebraic identities, one of them being the Bianchi identity:

DτRαβγδ + DβRταγδ + DαRβτγδ = 0. (1)

(1) will be particularly useful in situations where we have better control of derivatives
in certain ’good’ directions. When we encounter derivatives in ’bad’ directions, we
will try to use (1) to trade them against derivatives in ’good’ directions.

Finally, taking the trace of the curvature tensor, we obtain the Ricci tensor:

Rαβ = Rγ αγβ.

This allows us to define Einstein vacuum equations:

Rαβ = 0. (2)
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Since the Ricci tensor is a symmetric 2-tensor onM, (2) is a system of 10 equations.
Also, the Ricci tensor expressed in any coordinate system takes the form:

φ1(g)∂2g + φ2(g)(∂g)2

for some nonlinear functions φ1, φ2, so that (2) is a system of 10 quasilinear second
order partial differential equations.

Let us conclude this section by mentioning the simplest explicit solution to (2)
which is the Minkowski space-time (R1+3,m), with m given by:

m = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (3)

1.2. The Cauchy problem for Einstein vacuum equations
To get a better sense of (2), it is instructive to consider a particular coordinate
system onM called the wave coordinates. These coordinates satisfy wave equations:

�gx
α = 1√

|g|
∂β(gβγ

√
|g|∂γ)xα = 0, α = 0, 1, 2, 3. (4)

In these coordinates, (2) becomes a system of quasilinear wave equations:

�ggαβ = Nαβ(g, ∂g), α, β = 0, 1, 2, 3, (5)

where Nαβ is quadratic with respect to ∂g. The Cauchy data for (5) consist of g(0, .)
and ∂tg(0, .). In general, it is preferable to work with a coordinate invariant defini-
tion: the Cauchy data for Einstein vacuum equations (2) consist of a Riemannian
three dimensional metric gij and a symmetric 2-tensor kij on the space-like hyper-
surface Σ. The Cauchy problem then consists in finding a metric g satisfying (2)
such that the metric induced by g on Σ coincides with g and the 2-tensor k is the
second fundamental form of the hypersurface Σ (k corresponds to ∂tg(0, .)).

Remark 1. In the case of the Minkowski space-time (R1+3,m), the initial data set
is given by (R3, δ, 0) where δ denotes the Euclidean metric.

Now, it is well known that the Einstein equations form an overdetermined system.
As a consequence, the initial data set (Σ, g, k) cannot be prescribed arbitrarily and,
in fact, must satisfy the system of constraint equations:{

∇jkij −∇iTrk = 0,
R− |k|2 + (Trk)2 = 0, (6)

where the covariant derivative ∇ is defined with respect to the metric g, and R is
the scalar curvature of g.

In this paper, we would like to consider the local existence for (2). In particular,
we are interested in the minimal regularity properties of the initial data set (Σ, g, k)
which guarantee the existence and uniqueness of local developments. In view of
(5), we will start by recalling well-known facts about the local existence theory for
nonlinear wave equations.
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2. Review of local existence theory for nonlinear wave equa-
tions

2.1. Local existence theory for semilinear wave equations
We consider the semilinear wave equation in R1+3:{

�φ = N (φ, ∂φ), (t, x) ∈ R1+3,
φ(0, .) = φ0 ∈ Hs(R3), ∂tφ(0, .) = φ1 ∈ Hs−1(R3), (7)

where N is quadratic with respect to ∂φ, and we investigate for which s it is locally
well posed.

Using the usual energy estimate, we obtain:

‖φ(t)‖Hs(R3) + ‖∂tφ(t)‖Hs−1(R3) . exp
(∫ t

0
‖∂φ‖L∞(R3)

)
(‖φ0‖Hs(R3) + ‖φ1‖Hs−1(R3)),

and one is left with controlling the quantity:
‖∂φ‖L1

[0,T ]L
∞(R3). (8)

Using that H3/2+ε(R3) embeds in L∞(R3) immediately yields well-posedness for
s > 5/2.

In order to go beyond s > 5/2, one has to exploit the time integration in (8).
This can be achieved by the use of the following Strichartz estimate for the three-
dimensional linear wave equation:
‖∂φ‖L2

[0,T ]L
∞(R3) . (‖φ0‖Hs(R3) + ‖φ1‖Hs−1(R3) + ‖�φ‖L1

[0,T ]H
s−1(R3)), ∀s > 2, (9)

which allows to get well-posedness for s > 2 as was first seen in [19].
In general, this result is optimal. In fact, explicit counterexamples of solutions to

(7) that are ill-posed for s = 2 can be constructed (see [18]). However, one can go
below s > 2 provided the nonlinearity has the so-called null structure. In this case,
one can rely on bilinear estimates to prove well-posedness for s > 3/2 (see [8]). This
result is optimal since s = 3/2 is at the level of the scaling of (7). For completeness,
we give one example of nonlinearity exhibiting the null structure:

N = Qαβ with Qαβ(φ, ψ) = ∂αφ∂βψ − ∂αψ∂βφ, 0 ≤ α, β ≤ 3. (10)
For this nonlinearity, one obtains the following bilinear estimate (see [7]):
‖Qαβ(φ, ψ)‖L2(R1+3) . (‖φ0‖H2(R3) + ‖φ1‖H1(R3))(‖ψ0‖H1(R3) + ‖ψ1‖L2(R3)), (11)

where φ and ψ are solutions to the flat wave equation �φ = �ψ = 0.

2.2. Local existence theory for quasilinear wave equations
We consider the following quasilinear wave equation in R1+3:{

�g(φ)φ = N (φ, ∂φ), (t, x) ∈ R1+3,
φ(0, .) = φ0 ∈ Hs(R3), ∂tφ(0, .) = φ1 ∈ Hs−1(R3), (12)

where N is quadratic with respect to ∂φ, and we investigate for which s it is locally
well posed.

The method using the energy method together with the Sobolev embedding is still
valid and yields well-posedness for s > 5/2. Together with (5), this has been used to
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prove well-posedness for the Einstein vacuum equations (2) in the wave coordinates
(see [5] for the case s ≥ 4 and [6] for the improvement s > 5/2).

To go beyond s > 5/2, one is faced with the difficult task of deriving Strichartz
estimates for the wave equation on a curved background �gφ = 0 where g is only as-
sumed to be in L∞[0,T ]H

s(R3) and ∂g in L2
[0,T ]L

∞(R3). The first result in this direction
was obtained in [20] where a precise analog of (9) was obtained under the condition
that g is C2. This result is optimal (see [21]) and requires too much regularity to
tackle the case s ≤ 5/2. The breakthrough then came from [2] where the authors
realized that one does not need the precise analog of (9) to go beyond s > 5/2.
Instead they prove a Strichartz estimate with a loss which allows them to reach
s > 2 + 1/4 (see also [24]). Subsequent improvement were made in [1], [25], [9] until
the optimal result s > 2 was finally reached for the Einstein vacuum equations in
the sequence of papers [17] [16] [13], and for general quasilinear wave equations in
[22].

Motivated by the semilinear case, it is natural to consider whether it is possible to
go below s > 2 for quasilinear wave equations provided the nonlinearity satisfies the
null structure. However, it is not clear what this null structure should be in this case.
In fact, in the semilinear case, the null structure is connected to the geometry of the
light cones of the Minkowski metric (3) which are known explicitly. In the quasilinear
case (12), the metric g depends on the solution and is therefore an unknown of the
problem. Thus, we have no a priori knowledge on the light cones. A nice way to
circumvent this problem is the following: instead of trying to guess what should
be the null structure for quasilinear wave equations, let us take a quasilinear wave
equation which has a rich structure, and is therefore likely to have the null structure.
In view of (5) and the rich structure provided by the Bianchi identities (1), Einstein
vacuum equations stand out as a natural candidate. Thus, we will consider whether
one can prove well-posedness for (2) in H2.

3. The bounded L2 curvature conjecture

The following conjecture has been first stated in [12]:
Conjecture. Let (Σ, g, k) be asymptotically flat and satisfying the constraint

equations (6), with R ∈ L2(Σ), ∇k ∈ L2(Σ) and perhaps some weaker geometric
characteristics of Σ. Then, Einstein vacuum equations are locally well-posed.

Remark 2. The assumptions on the regularity R ∈ L2(Σ), ∇k ∈ L2(Σ) are at the
level of two derivatives of g in L2, and therefore consistent with H2.

Let us mention the following motivations for attacking this problem:

• This problem is clearly motivated by the local well-posedness theory reviewed
in the previous section. Such a result would be the first well-posedness result
for a quasilinear wave equation below s > 2. Note also that going from s > 2
to s = 2 will not result from a technical improvement of previous methods.
One will have to abandon Strichartz estimates, and rely instead on bilinear
estimates for quasilinear wave equations.

IX–4



• The assumptions R ∈ L2(Σ),∇k ∈ L2(Σ) are natural from the point of view of
geometry, since all quantities are invariantly defined (in the contrary to stating
a result in H2 which would depend on an a priori choice of coordinates).

• Rather than a well-posedness result, it can be viewed as a continuation argu-
ment. As long as R ∈ L2 and ∇k ∈ L2 along a spacelike hypersurface, one
may extend the solution of Einstein equations at least for a little longer.

4. Strategy for a proof
In light of the results obtained for the semilinear wave equation (see section 2.1 and
the discussion in [12]), to prove the bounded L2 curvature conjecture one needs the
following ingredients:

A Provide a system of coordinates relative to which (2) verifies an appropriate
version of the null condition.

B Construct a parametrix for solutions to the homogeneous wave equations �gφ =
0 on a fixed Einstein vacuum background, and obtain control of the parametrix
and of its error term only using the fact that the curvature is bounded in L2.

C Prove appropriate bilinear estimates for solutions to �gφ = 0, on a fixed
Einstein vacuum background (endowed with the coordinate system indicated
in A) using the parametrix constructed in B.

As far as step C is concerned, a bilinear estimate which is a precise analog of (11)
has been proved in [14]. The authors rely on the following plane wave parametrix:

Tf(t, x) =
∫

S2

∫ +∞

0
eiλu(t,x,ω)f(λω)λ2dλdω, (13)

where u(., ., ω) is a solution to the Eikonal equation gαβ∂αu∂βu = 0 onM such that
u(0, x, ω) ∼ x.ω when |x| → +∞ on Σ.

We would like to carry out step B with the parametrix defined in (13). Via the
energy estimates for the wave equation, it suffices to control the parametrix at t = 0
(i.e. restricted to Σ):

Tf(0, x) =
∫

S2

∫ +∞

0
eiλu(0,x,ω)f(λω)λ2dλdω, (14)

and the error term:

Ef(t, x) = �gTf(t, x) =
∫

S2

∫ +∞

0
eiλu(t,x,ω)�gu(t, x, ω)f(λω)λ3dλdω. (15)

This requires the following ingredients, the two first being related to the control of
the parametrix restricted to Σ (14), and the two others being related to the control
of the error term (15):

B1 Make an appropriate choice for the equation satisfied by u(0, x, ω) on Σ, and
control the geometry of the foliation of Σ by the level surfaces of u(0, x, ω).

B2 Prove that the parametrix at t = 0 given by (14) is bounded in L(L2(R3), L2(Σ))
using the estimates for u(0, x, ω) obtained in B1.
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B3 Control the geometry of the foliation ofM given by the level hypersurfaces of
u.

B4 Prove that the error term (15) satisfies the estimate ‖Ef‖L2(M) ≤ C‖λf‖L2(R3)
using the estimates for u and �gu proved in B3.

Step B1 and B3 are more geometric, while step B2 and B4 blend geometric
estimates with harmonic analysis decompositions. In order to keep the exposition
simple while at the same time giving a flavor of both the geometric and the harmonic
analysis part, we will focus on step B1 and B4.

Remark 3. Step B3 has already been initiated in the series of papers [15] [10] [11]
where the authors prove the crucial estimate �gu ∈ L∞(M).

Remark 4. This paper reports on recent progress obtained for step B. To complete
the proof of the conjecture, one still needs to address step A, and some bilinear
estimates of step C in addition to the one already proved in [14].

5. Step B1: control of the foliation at initial time

5.1. Geometry of the foliation ofM by u and of Σ by u(0, x, ω)
Remember that u is solution to the Eikonal equation gαβ∂αu∂βu = 0 on M. Let
L = −gαβ∂αu ∂β be the corresponding null generator vectorfield and s its affine
parameter, i.e. L(s) = 1. Let us introduce the level hypersurfaces of u

Hu = {(t, x) inM such that u(t, x, ω) = u}
which form a foliation of M. The level surfaces Ps,u of s generate the geodesic
foliation on Hu.

The geometry of Hu depends in particular on the null second fundamental form
χ(X, Y ) =< DXL , Y > (16)

where X, Y are arbitrary vectorfields tangent to the s-foliation Ps,u and where D
is the covariant differentiation with respect to g. We denote by trχ the trace of χ,
i.e. trχ = δABχAB where χAB are the components of χ relative to an orthonormal
frame (eA)A=1,2 on the leaves of the s-foliation. An easy computation yields:

�gu = trχ (17)
so that ones needs to prove enough regularity for trχ to control the error term of
the parametrix (15). It satisfies the well known Raychadhouri equation

d

ds
trχ+ 1

2(trχ)2 = −|χ̂|2 (18)

with χ̂AB = χAB−1/2trχδAB the traceless part of χ. This transport equation is used
in [15] to prove the crucial estimate trχ ∈ L∞(M) provided that trχ is in L∞(Σ)
at t = 0.

Remark 5. It is useful to remember what are the corresponding objects in the
case of the Minkowski space-time (R1+3,m). One has u(t, x, ω) = t + x.ω, so that
R1+3 is foliated by parallel hyperplanes Hu = {(t, x) / t + x.ω = u}. We also have
L = ∂t − ω∂x, s = (t− x.ω)/2, and Ps,u = {(t, x) / t = u/2 + s and x.ω = u/2− s}
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are planes so that χ ≡ 0. In particular, the fact that u(t, x, ω) = t+x.ω implies that
the parametrix (13) is the usual plane wave representation of the flat wave equation.
Also, trχ = 0 and (17) imply that the error term (15) vanishes making step B4
trivial in this case.

Let us now recall the link between u(0, x, ω) and trχ(0, x, ω). We define the lapse
a = |∇u(0, x, ω)|−1, and the unit vector N such that ∇u(0, x, ω) = a−1N . We also
define the level surfaces Pu = {x / u(0, x, ω) = u} so that N is the normal to Pu.
The second fundamental form θ of Pu is defined by

θ(X, Y ) =< ∇XN , Y > (19)

where X, Y are arbitrary vectorfields tangent to the u-foliation Pu of Σ and where ∇
denotes the covariant differentiation with respect to g. We denote by trθ the trace of
θ, i.e. trθ = δABθAB where θAB are the components of θ relative to an orthonormal
frame (eA)A=1,2 on Pu.

Remark 6. Again, let us precise these objects in the case of the Minkowski space-
time (R1+3,m). One has Σ = R3, g = δ and u(0, x, ω) = x.ω, so that R3 is foliated
by parallel planes Pu = {x / x.ω = u}. We also have a = 1, N = ω and θ ≡ 0. In
particular, the fact that u(0, x, ω) = x.ω implies that the parametrix at initial time
(14) is the inverse Fourier transform which certainly satisfies step B2.

We have the following equality on Σ:

trχ = trθ + trk. (20)

Now, Trk = trk+kNN . Furthermore, in addition to the constraint equations (6), we
may impose Trk = 0 which corresponds to a maximal foliation (see [3]). Thus, we
obtain the following relation between u(0, x, ω) and trχ(0, x, ω) on Σ:

trχ = trθ − kNN on Σ. (21)

So trχ is in L∞(Σ) at t = 0 if and only if

trθ − kNN ∈ L∞(Σ). (22)

Finally, we recall the structure equations of the u(0, x, ω) foliation:{
∇AN = θA·,

∇NN = −∇/ log(a), (23)

and 
a−1∆/ (a) = −∇Ntrθ − |θ|2 −RNN ,
∇/ B θ̂AB = 1

2∇/ Atrθ +RNA,

a−1∇/ A∇/ Ba+∇NθAB + θCAθCB +KγAB = RAB,

(24)

where θ̂AB = θAB− 1/2trθδAB is the traceless part of θ, K is the Gauss curvature of
Pu, γ is the metric on Pu induced by g, and ∇/ is the intrinsic covariant derivative on
Pu. Taking the trace of the last equality of (24) and using the first equality yields:

2K − trθ2 + |θ|2 = R− 2RNN . (25)
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5.2. Control of the foliation of Σ
In view of (22), we look for u(0, x, ω) satisfying the following three conditions:

B1a u(0, x, ω) ∼ x.ω when |x| → +∞ on Σ

B1b trθ − kNN ∈ L∞(Σ)

B1c u(0, x, ω) has as enough regularity with respect to x and ω to achieve step B2,
i.e. to control the parametrix at t = 0 given by (14)

where the initial data set (Σ, g, k) satisfies
∇jkij = 0,
R = |k|2,
Trk = 0,

(26)

and where R and ∇k are in L2(Σ).
In order to motivate our choice of u(0, x, ω), we investigate the regularity of the

lapse a, which by (24) satisfies the following equation:
a−1∆/ (a) = −∇Ntrθ − |θ|2 −RNN . (27)

Since R is in L2(Σ), (27) implies that a has at most two derivatives in L2(Σ). Thus,
u(0, x, ω) has at most three derivatives with respect to x in L2(Σ). This is not enough
to satisfy B1c (i.e. to obtain the boundnessness of the parametrix at t = 0 on L2).
In fact, the classical T ∗T argument (see for example [23]) relies on integrations by
parts in x and would require at least one more derivative.

Alternatively, we could try to use the TT ∗ argument which relies on integration
by parts in ω. Indeed, R being independent of ω, one would expect the regularity
of u(0, x, ω) with respect to ω to be better. Differentiating (27) with respect to ω,
we obtain:

a−1∆/ (∂ωa) = 2∇/∇Na+ · · · , (28)
where the term on the right-hand side comes from the commutator [∂ω,∆/ ]. Thus,
obtaining an estimate for ∂ωa from (28) requires to control ∇Na. Unfortunately,
(27) seems to provide control of tangential derivatives of a only. This is where the
specific choice of u(0, x, ω) comes into play.

Having in mind the equation of minimal surfaces (i.e. trθ = 0), condition B1b
suggest the choice trθ − kNN = 0. Unfortunately, this equation together with (27)
does not provide any control of ∇Na. We propose as a second guess to take instead
trθ − kNN = ∇Na. Plugging into (27) yields an elliptic equation for a: ∇2

Na +
a−1∆/ (a) = −|θ|2−∇NkNN−RNN . This allows us to control∇2

Na in L2(Σ). However,
∇Na is at most in H1(Σ) which does not embed in L∞(Σ) so that condition B1b is
not satisfied. To sum up, the first guess trθ − kNN = 0 satisfies B1b, but not B1c,
whereas the second guess trθ− kNN = ∇Na might satisfy B1c, but does not satisfy
B1b.

The correct choice sits in the middle:
trθ − kNN = 1− a. (29)

Plugging (29) in (27) yields:
∇Na− a−1∆/ (a) = |θ|2 +∇NkNN +RNN . (30)
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This parabolic equation together with the Bianchi identity for R allows us to control
not only tangential but also normal derivatives of a. In particular, we are able to
obtain:

∇/ 2a ∈ L2(Σ),∇/∇Na ∈ L2(Σ) and ∇2
Na ∈ L2

uH
−1(Pu). (31)

One can deduce from (31) that a− 1 belongs to L∞(Σ) so that B1b is satisfied.
Then, differentiating (30) several times with respect to ω and using (31), we

obtain:
∂3−ε
ω u ∈ L∞(Σ) for all ε > 0. (32)

In fact, due to the parabolic nature of (30), we control less normal derivatives than
tangential ones as shown by the last estimate of (31). Now, since each differentiation
with respect to ω introduces a normal derivative of a as shown by (28), one expects
to be able to differentiate u(0, x, ω) at most three times, which is confirmed by (32).

Let us mention some of the difficulties that we have to face in the course of the
proof of (31) and (32):

• To close the estimates for a, we have to obtain corresponding estimates for θ
and N using (23) and (24).

• From (30), we control in particular ∆/ a in L2(S). To obtain that ∇/ 2a belongs
to L2(Σ), one uses the Bochner identity for scalars:∫

Pu
|∇/ 2a|2µu =

∫
Pu
|∆/ a|2µu −

∫
Pu
K|∇/ a|2µu, (33)

which forces us to obtain a good enough control of the Gauss curvature K.

• To prove our a priori estimates, we rely on Sobolev embeddings on the foliation
of Σ given by u(0, x, ω). Once u(0, x, ω) is constructed, we have to prove a
posteriori that these embeddings hold. The constants appearing in the various
embeddings are then incorporated in a bootstrap.

• Some a priori estimates require the use of Littlewood-Paley projections on Pu.
We use the geometric approach derived in [10] for 2-dimensional manifolds.

Finally, let us mention briefly some difficulties we have to face in step B2. We
are not able to obtain the estimate ∂ωa ∈ L∞(Σ) with the choice (29). In turn, this
implies that we are not able to get the estimate ∂ω∂xu ∈ L∞(Σ). This is a serious
difficulty in view of satisfying step B2 (i.e. the boundnessness of the parametrix
at t = 0 on L2). In fact, the classical T ∗T and TT ∗ arguments (see for example
[23]) prove boundnessness on L2 by using several integrations by parts. Without the
assumption that ∂ω∂xu is in L∞, one can not perform even one of these integrations
by parts. Anyway, even if these integrations by parts could be performed, recall that
we don’t have enough regularity in x to apply the T ∗T method. Alternatively, we
could try the TT ∗ method which relies on integration by parts in ω. But (32) is also
not enough and we would need at least one more derivative in ω. Nevertheless, we
are able to prove that the regularity of u given by (31) and (32) is enough to achieve
step B2. To this end, we use both the regularity in x and ω, and take advantage
of the geometry (i.e. the fact that we have more regularity along the tangential
directions).
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6. Step B4: control of the error term
Recall from section 5.1 that we have associated to u its null generator vectorfield
L, the affine parameter s, its level hypersurfaces Hu, surfaces Ps,u, and the second
fundamental form χ. Following [4], we also introduce a null frame L, L, eA, A =
1, 2, where eA, A = 1, 2 are arbitrary orthonormal vectors tangent to Ps,u, and L
completes the frame according to the following relations:
g(L,L) = g(L,L) = 0, g(L,L) = −2, g(L, eA) = g(L, eA) = 0, j = 1, 2,g(eA, eB) = δBA .

While we do not give details for step B3, let us still mention that we obtain less
control for the derivatives in the L direction than for the derivatives in tangential
directions eA, A = 1, 2 and in the direction L (in the same spirit that we have less
control for the normal derivatives than for the tangential ones at initial time).

Using (17), the error term (15) can be rewritten as follows:

Ef(t, x) = i
∫

S2

∫ +∞

0
eiλu(t,x,ω)trχ(t, x, ω)f(λω)λ3dλdω, (34)

and our goal is to prove:
‖Ef‖L2(M) ≤ C‖λf‖L2(R3). (35)

The following computation is instructive:

‖Ef‖L2(M) ≤
∫

S2

∥∥∥∥trχ(t, x, ω)
∫ +∞

0
eiλuf(λω)λ3dλ

∥∥∥∥
L2(M)

dω

≤
∫

S2
‖trχ‖L∞(M)

∥∥∥∥∫ +∞

0
eiλuf(λω)λ3dλ

∥∥∥∥
L2
dω ≤ ‖λ2f‖L2(R3),

(36)

where we have used Plancherel with respect to λ, Cauchy-Schwarz with respect to
ω and the fact that trχ is in L∞(M). (36) misses (35) by a power of λ. Now, assume
for a moment that we may replace a power of λ by a derivative on trχ. Then, the
same computation yields:∥∥∥∥∫

S2

∫ +∞

0
∇trχ(t, x, ω)eiλuf(λω)λ2dλdω

∥∥∥∥
L2(M)

≤
∫

S2
‖∇trχ‖L∞u L2(Hu)

∥∥∥∥∫ +∞

0
eiλuf(λω)λ3dλ

∥∥∥∥
L2
u

dω

≤ ‖∇trχ‖L∞ω,uL2(Hu)‖λf‖L2(R3).
(37)

(37) would yield (35) since we are able to prove that ∇trχ ∈ L∞ω,uL2(Hu) in step
B3. This suggests a strategy which consists in making integrations by parts to trade
powers of λ against derivatives of trχ. We proceed in three steps.

6.1. Decomposition in frequency
Let ϕ and ψ two smooth compactly supported functions on R such that:

ϕ(λ) +
∑
j≥0

ψ(2−jλ) = 1 for all λ ∈ R. (38)

We use (38) to decompose the error term as follows:

Ef(t, x) =
∑
j≥−1

Ejf(t, x), (39)
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where for j ≥ 0:

Ejf(t, x) = i
∫

S2

∫ +∞

0
eiλu(t,x,ω)trχ(t, x, ω)ψ(2−jλ)f(λω)λ3dλdω, (40)

and
E−1f(t, x) = i

∫
S2

∫ +∞

0
eiλu(t,x,ω)trχ(t, x, ω)ϕ(λ)f(λω)λ3dλdω. (41)

This decomposition is classical and is known as the first dyadic decomposition (see
[23]). The goal of this section is to prove that:∣∣∣∣∫
M
Ej(t, x)Ek(t, x)dM

∣∣∣∣ ≤ C2−|k−j|‖ψ(2−jλ)λf‖L2(R3)‖ψ(2−kλ)λf‖L2(R3) for j 6= k,

(42)
which in turn will imply:

‖Ef‖2L2(M) ≤
∑
j≥−1
‖Ejf‖2L2(M). (43)

To obtain (42), we integrate by parts twice with respect to L. Assume for instance
that j > k. The worst term is then the one where the two L derivatives fall on
the same trχ corresponding to Ej. One is then able to obtain (42) provided LLtrχ
satisfies the following decomposition:

LLtrχ = ∇/ h+ · · · , where h ∈ L∞u L2(Hu). (44)
In fact, the two integrations by parts with respect to L gain 2−2j. We then integrate
by parts by ∇/ to get rid of ∇/ in front of h at the expense of 2k. Now, 2−j is used
to absorb the excess of λ in computation (36), and we finally obtain a gain of 2k−j
which yields (42).

Obtaining the decomposition (44) requires a lot of work. Let us just mention the
basic idea behind it. Since Ltrχ is in L∞u L2(Hu) by step B3, (44) essentially means
that we may trade one L derivative against a ∇/ derivative. The key ingredient of
this trade of derivatives is the use of the Bianchi identity (1).

6.2. Decomposition in angle
Here we perform a second dyadic decomposition (see [23]). We introduce a smooth
partition of unity on the sphere S2:∑

ν

ηνj (ω) = 1 for all ω ∈ S2, (45)

where the support of ηνj is a patch on S2 of diameter ∼ 2−j/2. We use (45) to
decompose Ej as follows:

Ejf(t, x) =
∑
ν

Eνj f(t, x), (46)

where:

Eνj f(t, x) = i
∫

S2

∫ +∞

0
eiλu(t,x,ω)trχ(t, x, ω)ψ(2−jλ)ηνj (ω)f(λω)λ3dλdω. (47)

The goal of this section is to obtain an estimate for∣∣∣∣∫
M
Eνj (t, x)Eν′j (t, x)dM

∣∣∣∣ , ν 6= ν ′, (48)
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that will in turn will imply:
‖Ejf‖2L2(M) ≤

∑
ν

‖Eνj f‖2L2(M). (49)

In order to estimate (48), we integrate by parts twice with respect to ∇/ and obtain:∣∣∣∣∫
M
Eνj (t, x)Eν′j (t, x)dM

∣∣∣∣
≤ C(2j/2|ν − ν ′|)−2‖ψ(2−jλ)ηνj (ω)λf‖L2(R3)‖ψ(2−jλ)ην′j (ω)λf‖L2(R3) for ν 6= ν ′.

(50)
Unfortunately, (50) does not imply (49) since:

sup
ν′

∑
ν

(2j/2|ν − ν ′|)−2 ' j. (51)

Beating the log-loss in (51) requires a lot of effort. Let us just mention that the
key ingredient is to make a further decomposition using the geometric Littlewood-
Paley projections Pk introduced in [10]. In fact, we decompose trχ in the following
way:

trχ =
∑
k≥0

Pktrχ, (52)

which in turns yields a decomposition for Eνj :

Eνj =
∑
k≥0

Eν,kj , (53)

where Eν,kj is defined by:

Eν,kj f(t, x) = i
∫

S2

∫ +∞

0
eiλu(t,x,ω)Pktrχ(t, x, ω)ψ(2−jλ)ηνj (ω)f(λω)λ3dλdω. (54)

6.3. Control of ‖Eνj ‖L2(M)

Using (43) and (49), we have reduced the proof of (35) to the proof of:
‖Eνj ‖L2(M) ≤ C‖ψ(2−jλ)ηνj (ω)λf‖L2(R3). (55)

Unfortunately, the computation (36) only yields:
‖Eνj ‖L2(M) ≤ C2j/2‖ψ(2−jλ)ηνj (ω)λf‖L2(R3), (56)

where the 2j/2 gain with respect to (36) comes from the fact that taking Cauchy-
Schwarz in ω gains the square root of the volume of the support of the cut-off ηνj .
By comparing (55) and (56), we see that we still need to gain 2−j/2.

Let us reintroduce the parametrix (13) localized both in frequency and angle:

T νj f(t, x) =
∫

S2

∫ +∞

0
eiλu(t,x,ω)ψ(2−jλ)ηνj (ω)f(λω)λ2dλdω. (57)

The key is to use the wave equation satisfied by T νj :
�gT

ν
j f(t, x) = Eνj f(t, x), (58)

which is the analog of (15). Now:

Eνj f(t, x) = itrχ(t, x, ν)
∫

S2

∫ +∞

0
eiλu(t,x,ω)ψ(2−jλ)ηνj (ω)f(λω)λ3dλdω

+i
∫

S2

∫ +∞

0
eiλu(t,x,ω)(trχ(t, x, ω)− trχ(t, x, ν))ψ(2−jλ)ηνj (ω)f(λω)λ3dλdω.

(59)
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The last term in (59) gains 2−j/2 with respect to (56) thanks to trχ(t, x, ω) −
trχ(t, x, ν) and the fact that |ν − ω| ≤ 2−j/2, so that it is bounded in L2(M).
Thus we may rewrite (59) as:

Eνj f ' trχ(ν, t, x)dT νj f(t, x) + L2(M). (60)
(58) and (60) yield:

�gT
ν
j f(t, x) ' trχ(ν, t, x)dT νj f(t, x) + L2(M), (61)

and (55) follows from the energy estimate for the wave equation, the fact that
trχ ∈ L∞(M) and (60). Finally, (43), (49) and (55) imply (35) which concludes the
proof of step B4.
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