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GDR 2434 (CNRS)

Vorticity internal transition layers for the
Navier-Stokes equations

Franck Sueur

Abstract
We deal with the incompressible Navier-Stokes equations, in two and three

dimensions, when some vortex patches are prescribed as initial data i.e. when
there is an internal boundary across which the vorticity is discontinuous. We
show -thanks to an asymptotic expansion- that there is a sharp but smooth
variation of the fluid vorticity into a internal layer moving with the flow of the
Euler equations; as long as this later exists and as t << 1/ν, where ν is the
viscosity coefficient.

1. Introduction
The equations of incompressible fluid mechanics read

∂tv
ν + vν · ∇vν +∇pν = ν∆vν (1)

div vν = 0, (2)
where vν and pν respectively denote the velocity and the pressure of the fluid and
ν > 0 is the viscosity coefficient. When ν = 0 the equations (1)-(2) are referred as
the Euler equations whereas ν > 0 corresponds to the Navier-Stokes equations.
Here we will consider the academic case where the spatial derivative x runs into the
whole space Rd for d = 2 or 3.

We deal with the class of initial data of the vortex patches. More precisely
let be given an open subset O0,+ of Rd of Holder class Cs+1,r where s is in N
and 0 < r < 1. This means that there exists a function ϕ0 ∈ Cs+1,r(Rd,R) such
that an equation of the boundary ∂O0,+ is given by ∂O0,+ = {ϕ0 = 0}, such that
O0,± = {±ϕ0 > 0}, where O0,− is the interior of the complementary of O0,+, and
∇ϕ0 6= 0 in a neighborhood of ∂O0,+. We assume that the boundary ∂O0,+ is
bounded. We consider a divergence free initial velocity v0 in L2

loc(Rd) whose vorticity
ω0 := curl v0 is in the Holder space Cs,rc (O0,±), that is a compactly supported
vorticity which is Cs,r on each side of ∂O0,+.

Numerous results about the existence of solutions for such data (and even for
more general ones) are available either for the case of the Euler equations and for
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the Navier-Stokes equations. The main goal of this paper is to obtain an expansion
for the solutions of the Navier-Stokes equations which describes as well as possible
their behaviour with respect not only to the variables t, x but also to the viscosity
coefficient ν, in the limit νt → 0. However it is useful to gather first from the
literature the following compendium of results regarding the inviscid case ν = 0.

Theorem 1.1 (Chemin, Gamblin and X. Saint-Raymond, P. Zhang and Q. J. Qiu,
C. Huang, P. Serfati). There exists T > 0 (which can be taken arbitrarily large when
d = 2) and a unique solution v0 ∈ L∞(0, T ;Lip(Rd)) to the Euler equations:

∂tv
0 + v0 · ∇v0 +∇p0 = 0, (3)

div v0 = 0, (4)
with v0 as initial velocity. Moreover for each t ∈ (0, T ) the vorticity

ω0 := curlx v0(t) (5)
is Cs,rc (O±(t)) where O±(t) are respectively the transported by the flow of O0,± at time
t that is O±(t) := X 0(t,O0,±) where X 0 is the flow of particle trajectories defined
by ∂tX 0(t, x) = v0(t,X 0(t, x)) with initial data X 0(0, x) = x. For each t ∈ (0, T )
the boundary ∂O+(t) of the domain O±(t) is Cs+1,r and is given by the equation
∂O+(t) = {ϕ0(t, .) = 0}, where

ϕ0 ∈ L∞(0, T ;C1,r(Rd)) ∩ L∞(0, T ;Cs+1,r(O±(t)))
verifies

Dϕ0 = 0, (6)
ϕ0|t=0 = ϕ0, (7)

where D denote the vector field D := ∂t+ v0 · ∇. Moreover O±(t) = {±ϕ0(t, .) > 0}
and there exists η > 0 such that for 0 6 t 6 T , and x such that |ϕ0(t, x)| <
η the vector n(t, x) := ∇xϕ0(t, x) satisfies n(t, x) 6= 0. For each t ∈ (0, T ) the
function (ω0.n)(t, .) is C0,r on {|ϕ0(t, .)| < η}. Finally the internal boundary ∂O+(t)
is analytic with respect to time and the restrictions on each side of the boundary of
the flow X 0 are also analytic with respect to time with values in Cs+1,r.

The two-dimensional case was proved first by Chemin [3] (see also his recent
survey [4]). This result was very surprizing since it yielded a negative answer to a
conjecture by Majda in [12] on the particular case of an initial vorticity ω0 which is
the characteristic function of a bounded domain of class Cs+1,r. The persistence of
piecewise smoothness of the vorticity (Holder regularity up to the boundary) was
proved later first by Depauw in the case s = 0 in [5] and by Huang [10] in the
general case s in N with a Lagrangian approach. Chemin’s approach was extended
to the three dimensional case d = 3 by Gamblin and X. Saint-Raymond in [8]. The
tangential smoothness in the general case s ∈ N was alluded in the comment (ii)
of section 1.d of Gamblin and Saint-Raymond and rigorously proved by P. Zhang
and Q. J. Qiu in [17]. The persistence of piecewise C0,r smoothness (the case s = 0)
was proved by Huang in [11] by mean of a Lagrangian approach (see also [6] section
3.1). The proof of the persistence of higher order piecewise Cs,r smoothness is given
in [16]. The study of the smoothness of the boundary w.r.t. time began in Chemin’s
pioneering work [2] and was extended into analyticity w.r.t. time by P. Serfati [15]
(see also its doctoral thesis).
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Here we want to show that the solutions of the Navier-Stokes equations benefit from
a conormal smoothing of the initial vorticity discontinuity into a layer of width

√
νt

around the hypersurface {ϕ0(t, .) = 0} where the discontinuity has been transported
at the time t by the flow of the Euler equations. Hence the fluid vorticity

ων := curl vν (8)

depends -innerly- on the extra "fast" scale variable: ϕ
0(t,x)√
νt

and will be described by
an expansion of the form

ων(t, x) ∼ Ω(t, x, ϕ
0(t, x)√
νt

), (9)

where the viscous profile Ω(t, x,X) admits some limits when X → ±∞.

Remark 1.1. The idea to associate a viscous profile to an inviscid discontinuity
seems to date back to Rankine [13] and is widely known when the discontinuity is a
shock as for instance in compressible fluid mechanics (see the recent achievements by
Guès, Métivier, Williams and Zumbrun, for instance in [9]). However since they are
characteristic and conservative the vortex patches are very different from the shocks
of the compressible fluid mechanic (which are noncharacteristic and dissipative).
We therefore would like to precise that we borrow the words "viscous profile" to the
setting of shocks profiles but that our setting is quite different. For instance extra
scales involved are not the same in the two cases.

2. A highly simplified model

Let us first look at the 1d scalar heat equation:

∂tω
ν = ν∂2

xω
ν

which plays here the role of "baby model" for the Navier-Stokes equations. We pre-
scribe as initial data a discontinuous vorticity: ων |t=0 = 1R+ , where 1R+ denotes
the characteristic function of R+. In the inviscid case ν = 0 -which stands for
(highly) simplified Euler equations- the solution is simply equal to the initial data
ω0(t, .) := 1R+ for any time, whereas for ν > 0 and t > 0 one can explicitly compute
the solutions ων by convolution:

ων(t, x) := Ω( x√
νt

) where Ω(X) := 1√
π

∫ ∞
−X2
e−y

2
dy.

Hence the initial discontinuity of the vorticity is smoothed out into a layer of size√
νt where occurs -smoothly- the transition between the values 0 and 1. It is useful

to rewrite the ων as:

ων(t, x) := ω0(t, x) + Ω̃±( x√
νt

) when ± x > 0,

where

Ω̃±(X) := 1√
π

∫ ∓∞
−X2
e−y

2
dy when ±X > 0.
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One then see the "viscous" solutions ων as the sum of the "inviscid" solution ω0 plus
a "double initial-(internal) boundary layer" Ω̃± which satisfies the double-ODE:

∂2
XΩ̃± + X2 ∂XΩ̃± = 0 when ±X > 0,

and which matches the continuity conditions of ων and ∂xων at the internal boundary
x = X = 0 (for t > 0):

ω0|x=0+ + Ω̃+|X=0+ = 1− 1/2 = 0 + 1/2 = ω0|x=0− + Ω̃−|X=0− ,

∂XΩ̃+|X=0+ = 1
2
√
π

= ∂XΩ̃−|X=0−

and vanishes Ω̃±(X)→ 0 in the limits X → ±∞.

3. Inner scale in the Navier-Stokes equations
Of course the case of the Navier-Stokes equations is really much more complicated
than the previous baby model. In particular the inviscid discontinuity moves: Theo-
rem 1.1 states that the inviscid discontinuity occurs at the hypersurface {ϕ0(t, .) =
0} given by the eikonal equations (6)-(7) associated to the the particle derivative
D. Therefore we expect that the solutions ων of the Navier-Stokes equations with
vortex patches as initial data can be described by an expansion of the form

ων(t, x) ∼ ω0(t, x) + ω̃ν(t, x) (10)
where ω̃ν denotes a perturbation mainly local and conormally self-similar, that is
depending on the extra inner scale ϕ

0(t,x)√
νt

, so that

ω̃ν(t, x) := Ω̃(t, x, ϕ
0(t, x)√
νt

), (11)

with
lim
X→±∞

Ω̃(t, x,X) = 0. (12)

The consequences of the condition (12) on the profile Ω̃(t, x,X) at the level of the
function ω̃ν are threefold:

1. For any (t, ν) ∈ (0, T ) × R∗+, ω̃ν(t, x) → 0 when ϕ0 → ±∞. This was actu-
ally our motivation to impose the condition (12) on the profile Ω̃(t, x,X). It
sounds natural that the viscous layer is confined to the neighbourhood of the
hypersurface where the inviscid discontinuity occurs.

2. For any t ∈ (0, T ), for any x ∈ Rd \ ∂O+(t), ω̃ν(t, x)→ 0 when ν → 0+. This
consequence is directly linked with another strong underlying motivation to
this work that is the issue of the inviscid limit of the Navier-Stokes equation
to the Euler ones. The "strength" of this inviscid limit (that is the space where
it holds) does not depend only on the presence or not of material boundaries
but also on the smoothness of the initial data.

3. For any (x, ν) ∈ Rd × R∗+, ω̃ν(t, x) → 0 when t → 0+. This yields that the
Navier-Stokes vorticities ων have the same initial value than the Euler one
ω0.
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4. Amplitudes

We now pay attention to the expected order of amplitudes of velocity and pressure
profiles. In the full plane the Biot-Savart law has Fourier symbol − ξ

|ξ|2 ∧ . It is a
pseudo-local operator of order −1 so that we expect that the velocity vν given by
the Navier-Stokes equations can be described by an asymptotic expansion of the
form:

vν(t, x) ∼ v0(t, x) +
√
νt Ṽ (t, x, ϕ

0(t, x)√
νt

), (13)

where the profile Ṽ (t, x,X) is also expected to satisfy

lim
X→±∞

Ṽ (t, x,X) = 0. (14)

Plugging (10), (11) and (13) into the relations (8), taking into account (5) and
equalling the leading order terms leads to

n ∧ ∂X Ṽ = Ω̃. (15)

Hence the vorticity profile Ω̃ has to satisfy the orthogonality condition:

Ω̃.n = 0. (16)

This condition is not a surprise: since w0 is divergence free w0.n is continuous so that
no (large amplitude) layer is expected on the normal component of the vorticity.

Now the pressure pν can be recovered from the velocity vν by applying the operator
divergence to the equation (1) which yields the Laplace problem:

4x pν = −∂ivνj .∂jvνi . (17)

If the velocity vν satisfies the expansion (13), the r.h.s. of (17) should admit an
expansion of the form:

4x pν ∼ 4x p0 + F̃ (t, x, ϕ
0(t, x)√
νt

), (18)

where the function F̃ vanishes for X → ±∞. Since the Laplacian is of order −2 we
are lead to consider a perturbation of order νt on the pressure:

pν(t, x) ∼ p0(t, x) + νtP̃ (t, x, ϕ
0(t, x)√
νt

), (19)

where -once again- the fast scale ϕ
0(t,x)√
νt

is expected to be a local inner scale (since
the Laplacian operator is pseudo-local) so that

lim
X→±∞

P̃ (t, x,X) = 0. (20)

5. Looking for a profile equation

We plug the ansatz (13) and (19) into the equation (1), equalling the leading order
terms, which are of order

√
νt

0:

Dv0 +∇p0 +Dϕ0.∂X Ṽ = 0. (21)
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which is satisfied since the velocity v0 satisfies the Euler equations (3)-(4) and ϕ0

satisfies the eikonal equation (6). At the following order
√
νt we get the equality

DṼ + Ṽ · n ∂X Ṽ + Ṽ · ∇xv0 + ∂XP̃ n = 1
t
(|n|2∂2

X Ṽ + X2 ∂X Ṽ −
1
2 Ṽ ). (22)

We now pay attention to the divergence free condition. Plugging the ansatz (13) into
the equation (2), retaining the terms at order

√
νt

0 and taking into account that
the velocity v0 given by Euler is divergence free leads to the orthogonality equation:
n.∂X Ṽ = 0, which by integration, with the condition (14) leads to the condition:

n.Ṽ = 0. (23)
An important consequence of the condition (23) is to kill the second term in (22)
which is the only nonlinear one.

The equation (22) involves both Ṽ and P̃ . However the pressure in the NS equa-
tions is not truly an unknown but can be recovered from the velocity (as recalled
in (17)) so that we expect that the same holds for the profiles. One way to proceed
is to project normally the equation (22), to take into account that the (non-unit)
normal vector n(t, x) satisfies the equation:

Dn = −t(∇v0).n. (24)
and to use the condition (23) to get that

∂XP̃ := −2(Ṽ · ∇xv0).n
|n|2

. (25)

We now use the equation (25) to get rid of the pressure profile into the equation
(22). Inverting the two sides and dividing by t, we have:

|n|2∂2
X Ṽ + X2 ∂X Ṽ −

1
2 Ṽ = t(DṼ + Ṽ · ∇xv0 − 2(Ṽ · ∇xv0).n

|n|2
n), (26)

The vector field n may vanish, away the patch boundary, hence so may do the
coefficient in front of the leading order in the equation (26). To remedy to this we
consider a function a in the space

B := L∞
(

[0, T ], C0,r(Rd)
)
∩ L∞

(
0, T ;Cs,r

(
O±(t)

))
(27)

satisfying the condition
inf

[0,T ]×Rd
a =: c > 0 (28)

and such that a = |n|2 when |ϕ0| < η, and we consider for the profile V (t, x,X) the
linear partial differential equation:

LV = 0 (29)
where the differential operator L is given by

L := E − t(D + A)
where E and A are some operators of respective order 2 and 0 acting formally on
functions V (t, x,X) as follows:

EV := a∂2
XV + X2 ∂XV −

1
2V and AV := V · ∇xv0 − 2(V · ∇xv0).n

a
n.
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The substitution of a instead of |n|2 is almost harmless since their values are different
only for |ϕ0| > η, so that the corresponding values of the (expected, so far) solutions
V (t, x, ϕ

0(t,x)√
νt

) and Ṽ (t, x, ϕ
0(t,x)√
νt

) respectively given by the equations (26) and (29)
both tend to 0 as

√
νt tends to 0, because of the condition (14).

6. Transmission conditions
Because of the parabolic nature of the Navier Stokes equations, we expect that vν
and ων are continuous including through ϕ0 = 0 (these are the Rankine-Hugoniot
conditions associated to the problem), which lead to the transmission conditions: Ṽ
and ω0 + Ω̃ should be continuous, which (taking into account the equalities (15),
(16) and (23)) is equivalent to the transmission conditions: Ṽ and n∧ω0− |n|2∂X Ṽ
should be continuous. More precisely this means a priori that

Ṽ |X=0+,ϕ0=0+ − Ṽ |X=0−,ϕ0=0− = 0, (30)
|n|2∂X Ṽ |X=0+,ϕ0=0+ − |n|2∂X Ṽ |X=0−,ϕ0=0− = −(n ∧ ω0|ϕ0=0+ − n ∧ ω0|ϕ0=0−).(31)

Since X is the placeholder for ϕ
0(t,x)√
νt

the function Ṽ (t, x,X) needs to be defined only
when X and ϕ0(t,x)√

νt
share the same sign. However it is useful to look for a profile

V (t, x,X) defined for (t, x,X) in the whole domain

D := (0, T )× Rd × R.

As a consequence we will actually look at the following transmission conditions: for
any (t, x) ∈ (0, T )× Rd,

[V ] = 0 and [∂XV ] = −n ∧ (ω0
+ − ω0

−)
a

, (32)

where the brackets denote the jump [V ] = V |X=0+ − V |X=0− across {X = 0} and
where ω0

± are two functions in L∞
(

(0, T ), Cs,r
(
Rd)

)
such that ω0

±|O±(t) = ω0.
At the end the vorticity profile Ω in the expansion (9) would be constructed as

Ω(t, x,X) := ω0
±(t, x) + n(t, x) ∧ ∂XV (t, x,X), for ±X > 0.

7. Well-posedness
In the previous sections we have derived the equations (29) and the transmission
conditions (32). We want here to discuss their nature. First the condition (28) yields
some ellipticity with respect to X for the operator E . Roughly speaking the equation
(29) is therefore hyperbolic in t, x and parabolic in t,X, but degenerates for t = 0
into an elliptic equation inX. In particular the hypersurface {t = 0} is characteristic
for the equation (29) so that none initial condition at t = 0 has to be prescribe. At
the interface {X = 0} the transmission conditions (32) are normal for the operator
E . As a matter of fact the equation (29), with the transmission conditions (32) on
the interface {X = 0} and the conditions (14) for X at infinities are well-posed in
appropriate spaces.

Actually we will use here a L2 setting, for two reasons: first in view to future
extensions we want to give a claim hopefully robust. In particular it is well-known
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since [1] that in (multi-dimensional) compressible fluid mechanics the inviscid system
should be tackled in L2-type spaces. This will to robustness is also the reason why
we choose to put the emphasis on the velocity in this presentation, more than on
the vorticity. The second reason for a L2 setting is linked to the degeneracy at t = 0
of the equation (29), which leads to the existence of parasite solutions. For instance
if we look for solutions V not depending on X and neglecting the term involving
A the equation (29) simplifies into the Fuschian differential equation t∂tV = −V/2,
which admits an infinity of solutions i.e. V (t) = C/

√
t, for C ∈ R. However only

one is in L2(0, T ), corresponding to C = 0; and of course we expect that our scaling
is relevant enough to have a solution with L2(0, T ) smoothness (at least), even in
the case of the full equation (29). Let us give a precise statement: denoting E1 the
space

E1 := L2
(
(0, T )× Rd, H1(R)

)
we will prove:

Theorem 7.1. For any f ∈ E ′1, for any g ∈ L2
(
(0, T )×Rd

)
there exists exactly one

solution V (t, x,X) ∈ E1 of LV = f on the both sides D± := (0, T )×Rd×R∗± with the
transmission conditions ([V ], [∂XV ]) = (0, g) on the interface Γ := (0, T )×Rd×{0}.
In addition the function

√
t‖V (t, ., .)‖L2(Rd×R) is continuous on (0, T ).

Proof. The equation LV = f is satisfied in the sense of distributions on both sides
D±. Since V is in E1 the jump [V ] is in L2(Γ). The sense given to the jump of the
derivative [∂XV ] is actually a part of the problem. The idea is to give some sense
by using the equation put in a weak form thanks to Green’s formula.

We will explain this process a little bit more in details in a few lines but let us
first point out here that because of its unbounded coefficient X the operator E does
not strictly enter in the classical theory of elliptic operators (with, of course, t, x
as parameter through the coefficient a). As a consequence we consider σ > 0 and a
smooth function χσ such that χσ(X) = X for |X| < σ, χσ(X) = 3σ/2 for |X| > 2σ
and ‖χ′σ‖L∞(R) < 1. We will work with the modified operators

Lσ := L+ χσ(X)−X
2 ∂X

whose coefficients are bounded. Even more the coefficients of the first order part are
Lipschitz. We will also use the operators

L̃ := L− a∂2
X and L̃σ := L̃+ χσ(X)−X

2 ∂X .

Now we are ready to recast the problem into a weak form. For any V in the space
E2 := {V ∈ C0(D)/ V |D± ∈ C∞} and W in H1(D) we have, integrating by parts,
the following Green identity:∑

±

∫
D±
LσV.W =

∫
D

(V.L̃∗σW − a∂XV.∂XW )−
∫

Γ
a[∂XV ].W − T

∫
Γ̃
W.V (33)

where Γ̃ := {T} × Rd × R and where L̃∗σ denotes the operator (the adjoint of L̃σ)

L̃∗σV := −χσ(X)
2 ∂XV −

1
2(1 + χ′σ(X))V + t(DV + (1 + div v0 − A)V ). (34)

In fact less smoothness is needed. Let us introduce the Hilbert space E4 := {V ∈
E1/ LσV ∈ H−1(D)} endowed with the norm ‖V ‖E4 := ‖V ‖E1 + ‖LσV ‖H−1(D).
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Thanks to a classical lemma by Friedrichs [7] the space E2 is dense in E4. Moreover
we have:

Lemma 7.1. The map

V ∈ E2 7→ τ :=
{
a[∂XV ] on Γ
TV on Γ̃ (35)

extends uniquely to a continuous linear map from E4 to H− 1
2 (Γ ∪ Γ̃) and Green’s

identity (33) is still valid for any couple (V,W ) in E4 × H1(D) in the generalized
sense that
< LσV,W >H−1(D),H1(D)=

∫
D

(V.L̃∗σW − a∂XV.∂XW )− < τ,W |Γ∪Γ̃ >H−
1
2 (Γ∪Γ̃),H

1
2 (Γ∪Γ̃)

.(36)

Proof. Let V be in E2 and W̃ be in H 1
2 (Γ∪ Γ̃). There exists a function W in H1(D)

such that W |Γ∪Γ̃ = W̃ . From Green’s identity (33) we infer that

|
∫

Γ∪Γ̃
τW̃ | 6 C‖V ‖E4‖W‖H1(D) 6 C‖V ‖E4‖W̃‖H 1

2 (Γ∪Γ̃)
.

Hence by Hahn-Banach theorem we get the existence of a continuous extension,
which is unique because of the density stated above. �

We therefore have given a meaning to the problem. This meaning can seem weak
but the next result said that is actually quite strong. We denote here the space
H1,2(D) of the functions V ∈ H1(D) such that ∂2

XV |D± are in L2.

Lemma 7.2. If V ∈ E4 satisfies the jump conditions [V ] = 0 and [∂XV ] = g on Γ in
the sense given by Lemma 7.1 then there exists a sequence V ε in H1,2(D) converging
to V in E4 and a sequence gε converging to g in L2((0, T )×Rd) such that [V ε] = 0
and [∂XV ε] = gε on Γ.

Proof. As this kind of process is very classical, see for instance Rauch [14], we only
briefly sketch the proof. The idea is to construct the sequence V ε by convoluting
in the variables t, x only to preserve the jump conditions, to use Friedrichs lemma
to prove the convergence in E4 and then to gain the extra X derivative, that is to
prove that the V ε are in H1,2(D), thanks to the equation. �

We will now prove uniqueness as a consequence of the following estimate: for any
function V in E1 satisfying the transmission problem there holds

‖V ‖E1 . ‖f‖E′1 + ‖g‖L2(Rd×R). (37)
The idea to prove this is to prove first that for smooth functions there holds

‖V ‖E1 +
√
T‖V (T, ., .)‖L2(Rd×R) . ‖f‖E′1 + ‖g‖L2(Rd×R) (38)

and then to proceed by density.
Now in order to prove the existence part of Theorem 7.1 we shall need another

Green formula which involves the complete transposition of the operator L. At a
smooth level that is for any V , W in the space E2 this Green identity reads:∑

±

∫
D±
LσV.W =

∫
D
L∗σW.V −

∫
Γ
a[∂XV ].W +

∫
Γ
aV.[∂XW ]− T

∫
Γ̃
W.V (39)

where L∗σ = a∂2
X + L̃∗σ denotes the adjoint of the operator Lσ. Proceeding as previ-

ously we get the following weak extension of the previous Green identity:
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Lemma 7.3. The map

V ∈ E2 7→ τ :=
{
a[∂XV ] on Γ
TV on Γ̃ (40)

extends uniquely to a continuous linear map from E4 to H− 3
4 (Γ ∪ Γ̃) and Green’s

identity (39) is still valid for any couple V,W in E4 × H1,2(D) in the generalized
sense that

< LσV,W >H−1(D),H1(D)=< L∗σW,V >E′1,E1 − < τ,W |Γ∪Γ̃ >H−
1
2 (Γ∪Γ̃),H

1
2 (Γ∪Γ̃)

(41)

+
∫

Γ
[∂XW ].aV |Γ.

It is therefore classical to infer the existence of a solution to the problem by using
Riesz’s theorem and the estimate (37) for the adjoint operator.

We then use again a sequence of approximation of the solution, and use the linear-
ity of the problem together with the a-priori estimate (38) to show that this sequence
is a Cauchy sequence in the space of the functions V such that

√
t‖V (t, ., .)‖L2(Rd×R)

is continuous on (0, T ). Completeness yields the conclusion.
We finally let σ goes to infinity. The estimate (38) is uniform with respect to σ.

Using weak compactness we can pass to the weak limit so that we get a solution to
the original equation. �

In the case of the transmission conditions (32) the source terms are orthogonal
to n. It is then possible to use the uniqueness part of the previous theorem to prove
that the function V (t, x,X) ·n(t, x) vanishes identically, what is self-consistent with
the condition (23) found in section 5 when looking for a profile problem.

8. Smoothness

We now show that the solution inherits the smoothness with respect to the usual
variables t, x from the coefficients; and which are piecewise smooth with respect
to the fast variable X. To do that we define for any Frechet space E of functions
depending on t, x and possibly on X the space

ED := {f ∈ E/ ∃C > 0/ (D
kf

Ckk! )k∈N is bounded in E}.

The last claim of Theorem 1.1 says that ω0 and n are in in the space BD (see (27)
for the definition of the space B). It is also possible to construct the functions ω0

±
and a in the space BD.

We denote p − S(R) the space of the functions f(X) whose restrictions to the
half-lines R± are in the Schwartz space of rapidly decreasing functions, and A the
space (of the functions f(t, x,X)):

A := L∞
(

(0, T ), C0,r
(
Rd, p− S(R)

))
∩ L∞

(
0, T ;Cs,r

(
O±(t), p− S(R)

))
.

Theorem 8.1. There exists exactly one function V (t, x,X) ∈ AD satisfying the
equation (29) for ±X > 0 and the transmission conditions (32).
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Proof. Lifting the r.h.s. of the transmission conditions (32) we reduce the problem
to prove that the solution Ṽ of

LṼ = f̃ on D±, [Ṽ ] = [∂X Ṽ ] = 0 on Γ, (42)
with f̃ ∈ AD, is also in AD.

Let us now first prove that Ṽ is in CD where we denote C := L∞
(
(0, T ) ×

Rd, H1(R)
)
. We establish an a-priori estimate, applying for any k ∈ N the field

Dk to the problem (42) to get

(E − k)Ṽ [k] = f̃ [k] + tṼ [k+1] + tAṼ [k] on D±, [Ṽ [k]] = [∂X Ṽ [k]] = 0 on Γ, (43)
where we denote by V [k] := DkṼ the kth iterated derivative of Ṽ along D and where
f̃ [k] := ∑3

l=1 f̃
[k]
l , where f̃ [k]

1 := Dkf̃ whereas f̃ [k]
2 and f̃ [k]

3 denote respectively the
commutators:

f̃
[k]
2 := [Dk, E ] =

k−1∑
l=0

(
k

l

)
Dk−la.∂2

X Ṽ
[l], f̃

[k]
3 := −[Dk, tA] = −

k−1∑
l=0

(
k

l

)
Dk−ltA.Ṽ [l].

The last sums have to be omitted when k = 0. Here we have used that [Dk, tD] =
kDk. We now multiply the first equation of (43) by Ṽ [k] and we now integrate w.r.t.
X only. This yields for any t, x ∈ (0, T )× Rd the estimate:∫

R
a|∂X Ṽ [k]|2 + (k + 3

4)
∫
R
|Ṽ [k]|2 6 |

∫
R
f̃ [k].Ṽ [k]|+

∫
R
t|Ṽ [k+1].Ṽ [k]|+ C1

∫
R
t|Ṽ [k]|2.(44)

Using the condition (28) the l.h.s. of (44) is larger than

c
∫

R
|∂X Ṽ [k]|2 + 3

4(k + 1)
∫
R
|Ṽ [k]|2.

We now bound the r.h.s. of (44). Using Cauchy-Schwarz and Young inequalities we
have ∫

R
|f̃ [k]

1 .Ṽ
[k]| 6 4

k + 1

∫
R
|f̃ [k]|2 + k + 1

4

∫
R
|Ṽ [k]|2. (45)

Integrating by parts yields

|
∫

R
f̃

[k]
2 .Ṽ

[k]| 6
k−1∑
l=0

(
k

l

)∫
R
|Dk−la∂X Ṽ [l]∂X Ṽ

[k]|. (46)

Since a is analytic, there exists Ca > 0 s.t. for any l ∈ N ||Dla||B 6 C lal! so that
using Cauchy-Schwarz and Young inequalities yield

|
∫

R
f̃

[k]
2 .Ṽ

[k]| 6 C2(
k−1∑
l=0

k!
l! C

k−l
a ||∂X Ṽ [l]||)2 + c2

∫
R
|∂X Ṽ [k]|2, (47)

where we denote here ||f || := (
∫
R |f(t, x,X)|2dX) 1

2 . In a similar way there exists
C3, CA > 0 s.t.

|
∫

R
f̃

[k]
3 .Ṽ

[k]| 6 C3(
k−1∑
l=0

k!
l! C

k−l
A ||Ṽ [l]||)2 + 1

8

∫
R
|Ṽ [k]|2. (48)

Finally for 0 < t < T we have

|
∫

R
tṼ [k+1].Ṽ [k]| 6

k + 1
8

∫
R
|Ṽ [k]|2 + 4T

k + 1

∫
R
|Ṽ [k+1]|2. (49)
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Hence
c

2

∫
R
|∂X Ṽ [k]|2 + k + 1

4

∫
R
|Ṽ [k]|2 6

4
k + 1

∫
R
|f̃ [k]|2 + C2(

k−1∑
l=0

k!
l! C

k−l
a ||∂X Ṽ [l]||)2

+C3(
k−1∑
l=0

k!
l! C

k−l
A ||Ṽ [l]||)2 + 4T

k + 1

∫
R
|Ṽ [k+1]|2 + C1T

∫
R
|Ṽ [k]|2

thus we infer -keeping the notations C1-C3 for their squareroots- that

c

4 ||∂X Ṽ
[k]||+

√
k + 1
8 ||Ṽ [k]|| 6 2√

k + 1
||f̃ [k]||+ C2

k−1∑
l=0

k!
l! C

k−l
a ||∂X Ṽ [l]|| (50)

+C3

k−1∑
l=0

k!
l! C

k−l
A ||Ṽ [l]||+

√
4T
k + 1 ||Ṽ

[k+1]||+ C1

√
T ||Ṽ [k]||.

We introduce the functions

ak(t, x) := ||Ṽ
[k]||
k!Ck , bk(t, x) := ||∂X Ṽ [k]||

k!Ck
√
k + 1

and fk(t, x) := ||f̃ [k]||
(k + 1)!Ck ,

where C is a positive real which will be chosen in a few lines. Dividing the estimate
(50) by k!Ck

√
k + 1 yields

c

4bk + 1
8ak 6 2fk + C2

k−1∑
l=0

(Ca
C

)k−lbl + C3

k−1∑
l=0

(CA
C

)k−lal +
√

4TCak+1 + C1

√
Tak.(51)

We choose C large enough so that max( C2
C
CA
−1 ,

C3
C
Ca
−1) 6 min( c8 ,

1
16) and then T is

chosen small enough so that
√

4TC 6 1
64 and that C1

√
T 6 1

64 . Hence summing
over k ∈ N the estimates (51) yield the a-priori estimate: for any t, x ∈ (0, T )× Rd∑

k∈N
( c8bk + 1

32ak) 6 2
∑
k∈N
fk. (52)

We now define the iterative scheme (Ṽ n)n∈N by setting Ṽ 0 as the solution of

E Ṽ 0 = f̃ on D±, [Ṽ 0] = [∂X Ṽ 0] = 0 on Γ,

and Ṽ n+1 as the solution of

E Ṽ n+1 = f̃ + t(D + A)Ṽ n on D±, [Ṽ n+1] = [∂X Ṽ n+1] = 0 on Γ.

Let us now only briefly explain our strategy to conclude and refer to [16] for the
complete proof. We first prove that Ṽ 0 is in CD. Then proceeding as in the proof of
the estimate (52) we infer the convergence of the iterative scheme to a solution Ṽ of
the problem (42). Using several time slices yields that V is in CD. Now to prove The-
orem 8.1, we increase the smoothness with respect to x thanks to a Paley-Littlewood
spectral localization. If we denote by B̃ the space of the functions f(t, x,X) with
B smoothness in t, x with values in H1(R), this yields that Ṽ is in B̃D. Then we
prove by induction that XkṼ is in B̃D for all k in N. Finally we use the equation to
increase by induction the number of derivatives with respect to X to get that Ṽ is
in ÃD.

�
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9. Complete expansion

If piecewise smoothness of the initial data is sufficient it is possible to continue
the expansion with respect to νt of the solutions of the Navier-Stokes equations.
At the extreme limit if the initial data is piecewise smooth on each side of the
interface {ϕ0 = 0} -that is if s = +∞- then it is possible to write a complete formal
asymptotic expansion of the Navier-Stokes velocities of the form:

vν(t, x) = v0(t, x) +
∑
j>1

√
νt
j
V j(t, x, ϕ

0(t, x)√
νt

) +O(
√
νt
∞), (53)

where the profile V 1 is the one constructed in the previous sections that is V 1 := V .
This corresponds to a complete asymptotic expansion of the vorticity of the form:

ων(t, x) =
∑
j>0

√
νt
j Ωj(t, x, ϕ

0(t, x)√
νt

) +O(
√
νt
∞), (54)

As a teaser for our paper [16] where the complete construction is done, we give an
insight of the method. We follow a Rankine-Hugoniot approach looking for some
profiles V j such that the expansion (53) solve -formally- the equations (1)-(2) on
each side {±ϕ0 > 0} plus the continuity of the velocity, of the pressure and of the
vorticity on the interface {ϕ0 = 0}. Taking the divergence and the normal scalar
product of the equation (1) yields the pressure problem:

∆pν = −div (vν · ∇vν) (55)
[pν ] = 0, (56)

[∂n pν ] = [(−vν · ∇vν + ν∆vν).n], (57)

where the notation [·] stands for the jump across the interface {ϕ0 = 0} (that is for
a piecewise smooth function f(t, x): we denote [f ] := f |ϕ0=0+ − f |ϕ0=0−). If we plug
the expansion (53) into the r.h.s. of the equations (55)-(57) we are led to look for a
pressure expansion of the form

pν(t, x) = p0(t, x) +
∑
j>2

√
νt
j

t
P j(t, x, ϕ

0(t, x)√
νt

) +O(
√
νt
∞), (58)

The profiles above are of the following form: for ±X > 0,

U(t, x,X) := U(t, x) + Ũ(t, x,X), (59)

where the function Ũ(t, x,X) is rapidly decreasing when ±X → ∞, and the letter
U is the placeholder for the Ωj, the V j and the P j. We will refer to the term U as
the regular part and to the term Ũ as the layer part. The layer part P̃ 2 is equal
to P̃ 2 = tP where P is the profile of the previous sections. This possibility to be
smoothly factorized by t is very particular to the order 2. It comes from the fact that
the (a-priori) main contribution given by the Laplacian in the r.h.s. of the equation
(57) vanishes thanks to the orthogonality property (23). Furthermore integrating
the equation (25), for ±X > 0, between X and ±∞, and taking the condition at
infinity (20) into account, yields

P̃ := −2
∫ ±∞
X

(Ṽ · ∇xv0).n
|n|2

, (60)
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so that the profile P̃ is discontinuous across {X = 0}. Hence to satisfy the pressure
continuity we have to add to the layer part P̃ 2 a regular part P 2.

To determine the velocity and pressure profiles we proceed iteratively, determining
at the step j the velocity profile V j, the regular part of the pressure profile P j and
the layer part of the following pressure profile P̃ j+1, from the profiles already known
by the previous steps.

10. Stability
To describe the stability of these expansions we introduce the set F of the families
(f ν(t, x))ν of the smooth functions such that for any s′ ∈ N, for any r′ ∈ (0, 1), the
sequence

(
√
νt
s′+r′‖f ν‖L∞((0,T ),Cs′,r′ (R3)))0<ν<ν0

is bounded. Then we have

Theorem 10.1. There exists ν0 > 0 such that for 0 < ν < ν0 for all k ∈ N for any
(t, x) ∈ (0, T )× Rd

ων(t, x) =
k∑
j=0

√
νt
j Ωj(t, x, ϕ

0(t, x)√
νt

) +
√
νt
k+1
ωνR (61)

with (ωνR)0<ν<ν0 in F .

Let us point out that if it is well-known that for any ν ≥ 0 there exists T ν > 0
and a unique solution vν ∈ L∞(0, T ν ;Lip(Rd)) solution of the equations (1)-(2) with
v0 as initial velocity, Theorem 10.1 proves that the lifetime T ν > 0 can be extended
such that T ν ≥ T . The lifetime of such expansions is the one of the solution of the
Euler equation ("the ground state") which traps the main part of the nonlinearity
of the problem.

We refer again to our paper [16] for the proof of Theorem 10.1 and more generally
for a more detailed treatment of this topic.
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