@incollection{JEDP_2006____A8_0, author = {Mazzeo, Rafe}, title = {Resolution blowups, spectral convergence and quasi-asymptotically conical spaces}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {8}, pages = {1--16}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2006}, doi = {10.5802/jedp.35}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.35/} }
TY - JOUR AU - Mazzeo, Rafe TI - Resolution blowups, spectral convergence and quasi-asymptotically conical spaces JO - Journées équations aux dérivées partielles PY - 2006 SP - 1 EP - 16 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.35/ DO - 10.5802/jedp.35 LA - en ID - JEDP_2006____A8_0 ER -
%0 Journal Article %A Mazzeo, Rafe %T Resolution blowups, spectral convergence and quasi-asymptotically conical spaces %J Journées équations aux dérivées partielles %D 2006 %P 1-16 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.35/ %R 10.5802/jedp.35 %G en %F JEDP_2006____A8_0
Mazzeo, Rafe. Resolution blowups, spectral convergence and quasi-asymptotically conical spaces. Journées équations aux dérivées partielles (2006), article no. 8, 16 p. doi : 10.5802/jedp.35. http://www.numdam.org/articles/10.5802/jedp.35/
[1] G. Carron, Cohomologie les variétés QALE, preprint (2005). arXiv:math.DG/0501290
[2] J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Diff. Geo. 18 (1984) 575-657. | MR | Zbl
[3] J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature bounded below, I, II and III, J. Diff. Geo.; I 46 No. 3 (1997) 406-480; II 54 No. 2 (2000) 13-36; III 54 No. 2 (2000) 37-74. | MR | Zbl
[4] A. Degeratu and R. Mazzeo, In preparation.
[5] Y. Ding, Heat kernels and Green’s functions on limit spaces, Comm. Anal. Geom. 10 No. 3 (2002) 475-514. | Zbl
[6] J. Gil and G. Mendoza Adjoints of elliptic cone operators, Amer. Jour. Math. 125 No. 2 (2003) 357–408. | MR | Zbl
[7] D. Joyce, Compact manifolds with special holonomy, Oxford University Press (2000). | MR | Zbl
[8] J. Lott, Collapsing and differential form Laplacian: the case of a singular limit space, arXiv:math.DG/0201289
[9] R. Mazzeo, Elliptic theory of differential edge operators I, Comm. PDE 16 No. 10 (1991) 1615-1664. | MR | Zbl
[10] P. McDonald, The Laplacian for spaces with cone-like singularities, Thesis, MIT (1990).
[11] R. Melrose, The Atiyah-Patodi-Singer index theorem, AK Peters, Wellesley (1993). | MR | Zbl
[12] R. Melrose, Pseudodifferential operators, corners and singular limits, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 217–234, Math. Soc. Japan, Tokyo, 1991. | MR | Zbl
[13] V. Nazaikinskii, A. Savin, B.-W. Schulze, B. Sternin, Elliptic theory on singular manifolds Diff and Int. Eqns. and their App., 7. Chapman & Hall, CRC, Boca Raton, FL, 2006. | MR | Zbl
[14] V. Nistor, Pseudodifferential operators on non-compact manifolds and analysis on polyhedral domains in Spectral geometry of manifolds with boundary and decomposition of manifolds Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005, 307–328. | MR | Zbl
[15] J. Rowlett, Spectral geometry and asymptotically conic convergence, Thesis, Stanford (2006).
Cité par Sources :