Dispersive estimates and absence of embedded eigenvalues
Journées équations aux dérivées partielles (2005), article no. 6, 10 p.

In [2] Kenig, Ruiz and Sogge proved

u L 2n n-2 ( n ) Lu L 2n n+2 ( n )

provided n3, uC 0 ( n ) and L is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with C 2 coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in L n+1 2 and variants thereof.

DOI : 10.5802/jedp.19
Koch, Herbert 1 ; Tataru, Daniel 2

1 Fachbereich Mathematik, Universität Dortmund
2 Department of Mathematics, University of California, Berkeley
@incollection{JEDP_2005____A6_0,
     author = {Koch, Herbert and Tataru, Daniel},
     title = {Dispersive estimates and absence of embedded eigenvalues},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {6},
     pages = {1--10},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2005},
     doi = {10.5802/jedp.19},
     mrnumber = {2352775},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.19/}
}
TY  - JOUR
AU  - Koch, Herbert
AU  - Tataru, Daniel
TI  - Dispersive estimates and absence of embedded eigenvalues
JO  - Journées équations aux dérivées partielles
PY  - 2005
SP  - 1
EP  - 10
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.19/
DO  - 10.5802/jedp.19
LA  - en
ID  - JEDP_2005____A6_0
ER  - 
%0 Journal Article
%A Koch, Herbert
%A Tataru, Daniel
%T Dispersive estimates and absence of embedded eigenvalues
%J Journées équations aux dérivées partielles
%D 2005
%P 1-10
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.19/
%R 10.5802/jedp.19
%G en
%F JEDP_2005____A6_0
Koch, Herbert; Tataru, Daniel. Dispersive estimates and absence of embedded eigenvalues. Journées équations aux dérivées partielles (2005), article  no. 6, 10 p. doi : 10.5802/jedp.19. http://www.numdam.org/articles/10.5802/jedp.19/

[1] A. D. Ionescu and D. Jerison. On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal., 13(5):1029–1081, 2003. | MR | Zbl

[2] C. E. Kenig, A. Ruiz, and C. D. Sogge. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J., 55(2):329–347, 1987. | MR | Zbl

[3] Herbert Koch and Daniel Tataru. Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure Appl. Math., 58(2):217–284, 2005. | MR | Zbl

[4] Michael Reed and Barry Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. | MR

[5] Christopher D. Sogge. Fourier integrals in classical analysis, volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. | MR | Zbl

[6] J. von Neumann and E.P. Wigner. Über merkwürdige diskrete Eigenwerte. Z. Phys., 30:465–467, 1929.

Cité par Sources :