In [2] Kenig, Ruiz and Sogge proved
provided , and is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in and variants thereof.
@incollection{JEDP_2005____A6_0, author = {Koch, Herbert and Tataru, Daniel}, title = {Dispersive estimates and absence of embedded eigenvalues}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--10}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2005}, doi = {10.5802/jedp.19}, mrnumber = {2352775}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.19/} }
TY - JOUR AU - Koch, Herbert AU - Tataru, Daniel TI - Dispersive estimates and absence of embedded eigenvalues JO - Journées équations aux dérivées partielles PY - 2005 SP - 1 EP - 10 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.19/ DO - 10.5802/jedp.19 LA - en ID - JEDP_2005____A6_0 ER -
%0 Journal Article %A Koch, Herbert %A Tataru, Daniel %T Dispersive estimates and absence of embedded eigenvalues %J Journées équations aux dérivées partielles %D 2005 %P 1-10 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.19/ %R 10.5802/jedp.19 %G en %F JEDP_2005____A6_0
Koch, Herbert; Tataru, Daniel. Dispersive estimates and absence of embedded eigenvalues. Journées équations aux dérivées partielles (2005), article no. 6, 10 p. doi : 10.5802/jedp.19. http://www.numdam.org/articles/10.5802/jedp.19/
[1] A. D. Ionescu and D. Jerison. On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal., 13(5):1029–1081, 2003. | MR | Zbl
[2] C. E. Kenig, A. Ruiz, and C. D. Sogge. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J., 55(2):329–347, 1987. | MR | Zbl
[3] Herbert Koch and Daniel Tataru. Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure Appl. Math., 58(2):217–284, 2005. | MR | Zbl
[4] Michael Reed and Barry Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. | MR
[5] Christopher D. Sogge. Fourier integrals in classical analysis, volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. | MR | Zbl
[6] J. von Neumann and E.P. Wigner. Über merkwürdige diskrete Eigenwerte. Z. Phys., 30:465–467, 1929.
Cité par Sources :