Dispersive estimates and absence of embedded eigenvalues
Journées équations aux dérivées partielles (2005), article no. 6, 10 p.

In [2] Kenig, Ruiz and Sogge proved

uL2nn-2(n)LuL2nn+2(n)

provided n3, uC0(n) and L is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with C2 coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in Ln+12 and variants thereof.

DOI : 10.5802/jedp.19
Koch, Herbert 1 ; Tataru, Daniel 2

1 Fachbereich Mathematik, Universität Dortmund
2 Department of Mathematics, University of California, Berkeley
@incollection{JEDP_2005____A6_0,
     author = {Koch, Herbert and Tataru, Daniel},
     title = {Dispersive estimates and absence of embedded eigenvalues},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {6},
     pages = {1--10},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2005},
     doi = {10.5802/jedp.19},
     mrnumber = {2352775},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.19/}
}
TY  - JOUR
AU  - Koch, Herbert
AU  - Tataru, Daniel
TI  - Dispersive estimates and absence of embedded eigenvalues
JO  - Journées équations aux dérivées partielles
PY  - 2005
SP  - 1
EP  - 10
PB  - Groupement de recherche 2434 du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.19/
DO  - 10.5802/jedp.19
LA  - en
ID  - JEDP_2005____A6_0
ER  - 
%0 Journal Article
%A Koch, Herbert
%A Tataru, Daniel
%T Dispersive estimates and absence of embedded eigenvalues
%J Journées équations aux dérivées partielles
%D 2005
%P 1-10
%I Groupement de recherche 2434 du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.19/
%R 10.5802/jedp.19
%G en
%F JEDP_2005____A6_0
Koch, Herbert; Tataru, Daniel. Dispersive estimates and absence of embedded eigenvalues. Journées équations aux dérivées partielles (2005), article  no. 6, 10 p. doi : 10.5802/jedp.19. https://www.numdam.org/articles/10.5802/jedp.19/

[1] A. D. Ionescu and D. Jerison. On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal., 13(5):1029–1081, 2003. | MR | Zbl

[2] C. E. Kenig, A. Ruiz, and C. D. Sogge. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J., 55(2):329–347, 1987. | MR | Zbl

[3] Herbert Koch and Daniel Tataru. Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure Appl. Math., 58(2):217–284, 2005. | MR | Zbl

[4] Michael Reed and Barry Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. | MR

[5] Christopher D. Sogge. Fourier integrals in classical analysis, volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. | MR | Zbl

[6] J. von Neumann and E.P. Wigner. Über merkwürdige diskrete Eigenwerte. Z. Phys., 30:465–467, 1929.

Cité par Sources :