This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.
Mots-clés : almost global existence, nonlinear Klein-Gordon equation, revolution hypersurfaces, normal forms
@incollection{JEDP_2005____A15_0, author = {Delort, Jean-Marc and Szeftel, J\'er\'emie}, title = {Almost global solutions for non hamiltonian semi-linear {Klein-Gordon} equations on compact revolution hypersurfaces}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {15}, pages = {1--13}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2005}, doi = {10.5802/jedp.26}, mrnumber = {2352782}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.26/} }
TY - JOUR AU - Delort, Jean-Marc AU - Szeftel, Jérémie TI - Almost global solutions for non hamiltonian semi-linear Klein-Gordon equations on compact revolution hypersurfaces JO - Journées équations aux dérivées partielles PY - 2005 SP - 1 EP - 13 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.26/ DO - 10.5802/jedp.26 LA - en ID - JEDP_2005____A15_0 ER -
%0 Journal Article %A Delort, Jean-Marc %A Szeftel, Jérémie %T Almost global solutions for non hamiltonian semi-linear Klein-Gordon equations on compact revolution hypersurfaces %J Journées équations aux dérivées partielles %D 2005 %P 1-13 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.26/ %R 10.5802/jedp.26 %G en %F JEDP_2005____A15_0
Delort, Jean-Marc; Szeftel, Jérémie. Almost global solutions for non hamiltonian semi-linear Klein-Gordon equations on compact revolution hypersurfaces. Journées équations aux dérivées partielles (2005), article no. 15, 13 p. doi : 10.5802/jedp.26. http://www.numdam.org/articles/10.5802/jedp.26/
[1] D. Bambusi: Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys. 234 (2003), no. 2, 253–285. | MR | Zbl
[2] D. Bambusi and B. Grébert: Birkhoff normal form for PDEs with tame modulus, preprint (2004).
[3] J. Bourgain: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal. 6 (1996), no. 2, 201–230. | MR | Zbl
[4] J.-M. Delort: Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1–61 | Numdam | MR | Zbl
[5] J.-M. Delort and J. Szeftel: Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not. (2004), no. 37, 1897–1966. | MR | Zbl
[6] J.-M. Delort and J. Szeftel: Almost orthogonality properties of products of eigenfunctions and applications to long-time existence for semi-linear Klein-Gordon equations on Zoll manifolds, preprint (2004). | MR
[7] J.-M. Delort and J. Szeftel: Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces, preprint (2004).
[8] S. Klainerman: The null condition and global existence to nonlinear wave equations, Lectures in Applied Mathematics 23, (1986), 293–326. | MR | Zbl
[9] T. Ozawa, K. Tsutaya and Y. Tsutsumi: Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z, 222, (1996) 341–362. | MR | Zbl
[10] J. Shatah: Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38, (1985) 685–696. | MR | Zbl
Cité par Sources :