Nous montrons deux résultats d’approximation de dimension finie et une propriété « nonsqueezing » symplectique pour le flot Korteweg-de Vries (KdV) sur le cercle . Le résultat nonsqueezing dépend des résultats d’approximation mentionnés et du théorème nonsqueezing de Gromov en dimension finie. Contrairement aux travaux de Kuksin [22] qui a lancé l’étude de résultats nonsqueezing pour des systèmes hamiltoniens de dimension infinie, l’argument nonsqueezing ici ne construit pas de capacité de façon directe. De cette manière, nos résultats sont semblables à ceux obtenus pour le flot NLS par Bourgain [3]. Cependant, une difficulté majeure ici est le manque d’estimations de lissage qui nous permettraient d’approximer facilement le flot KdV de dimension infinie par un flot hamiltonien de dimension finie. Pour contourner ce problème, nous inversons la transformation de Miura et travaillons au niveau de l’équation KdV modifiée (mKdV), pour laquelle une estimation de lissage peut être obtenue.
We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle . The nonsqueezing result relies on the aforementioned approximations and the finite-dimensional nonsqueezing theorem of Gromov [14]. Unlike the work of Kuksin [22] which initiated the investigation of non-squeezing results for infinite dimensional Hamiltonian systems, the nonsqueezing argument here does not construct a capacity directly. In this way our results are similar to those obtained for the NLS flow by Bourgain [3]. A major difficulty here though is the lack of any sort of smoothing estimate which would allow us to easily approximate the infinite dimensional KdV flow by a finite-dimensional Hamiltonian flow. To resolve this problem we invert the Miura transform and work on the level of the modified KdV (mKdV) equation, for which smoothing estimates can be established.
@incollection{JEDP_2005____A14_0, author = {Colliander, J. and Keel, M. and Staffilani, G. and Takaoka, H. and Tao, T.}, title = {Notes on symplectic non-squeezing of the {KdV} flow}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {14}, pages = {1--15}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2005}, doi = {10.5802/jedp.25}, mrnumber = {2352781}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.25/} }
TY - JOUR AU - Colliander, J. AU - Keel, M. AU - Staffilani, G. AU - Takaoka, H. AU - Tao, T. TI - Notes on symplectic non-squeezing of the KdV flow JO - Journées équations aux dérivées partielles PY - 2005 SP - 1 EP - 15 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.25/ DO - 10.5802/jedp.25 LA - en ID - JEDP_2005____A14_0 ER -
%0 Journal Article %A Colliander, J. %A Keel, M. %A Staffilani, G. %A Takaoka, H. %A Tao, T. %T Notes on symplectic non-squeezing of the KdV flow %J Journées équations aux dérivées partielles %D 2005 %P 1-15 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.25/ %R 10.5802/jedp.25 %G en %F JEDP_2005____A14_0
Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Notes on symplectic non-squeezing of the KdV flow. Journées équations aux dérivées partielles (2005), article no. 14, 15 p. doi : 10.5802/jedp.25. http://www.numdam.org/articles/10.5802/jedp.25/
[1] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II, Geometric and Funct. Anal. 3 (1993), 209-262. | MR | Zbl
[2] J. Bourgain, Aspects of longtime behaviour of solutions of nonlinear Hamiltonian evolution equations, GAFA 5 (1995), 105–140. | MR | Zbl
[3] J. Bourgain, Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties, Int. Math. Res. Notices, 1994, no. 2, (1994), 79–90. | MR | Zbl
[4] J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), 115-159. | MR | Zbl
[5] J. Bourgain, Global solutions of nonlinear Schrödinger equations, AMS Publications, 1999. | MR | Zbl
[6] M. Christ, J. Colliander, T. Tao, Illposedness for canonical defocussing equations below the endpoint regularity, to appear.
[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness result for KdV in Sobolev spaces of negative index, Elec. J. Diff. Eq. 2001 (2001) No 26, 1–7. | MR | Zbl
[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for periodic and non-periodic KdV and mKdV on and , J. Amer. Math. Soc. 16 (2003), 705–749. | MR | Zbl
[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Multilinear estimates for periodic KdV equations, and applications, Journ. Funct. Analy. 211 (2004), no. 1, 173–218. | MR | Zbl
[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, , preprint (2004).
[11] J. Colliander, G. Staffilani, H. Takaoka, Global well-posedness of the KdV equation below , Math Res. Letters 6 (1999), 755-778. | MR | Zbl
[12] L. Dickey, Soliton equations and Hamiltonian systems, World Scientific, 1991. | MR | Zbl
[13] C.S. Gardner, Korteweg-de Vries equation and generalizations IV, J. Math. Phys. 12 (1971), no. 8, 1548–1551. | MR | Zbl
[14] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. math., 82 (1985), 307–347. | MR | Zbl
[15] H. Hofer, E. Zehnder, A new capacity for symplectic manifolds., in Analysis et cetera, Academic Press (1990), 405–428. Edited by P. Rabinowitz and E. Zehnder. | MR | Zbl
[16] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Verlag, 1994. | MR | Zbl
[17] T. Kappeler, P. Topalov, Global well-posedness of KdV in , preprint 2003.
[18] T. Kappeler, P. Topalov, Global fold structure of the Miura map on , IMRN 2004:39 (2004), 2039–2068. | MR | Zbl
[19] C. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. | MR | Zbl
[20] C. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no 3, 617–633.. | MR | Zbl
[21] C. Kenig, G. Ponce, L.Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. | MR | Zbl
[22] S. Kuksin, Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE’s, CMP 167 (1995), 521–552. | MR | Zbl
[23] S. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Its Applications, 19, Oxford Univ. Press, 2000. | MR | Zbl
[24] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), no. 5, 1156–1162. | MR | Zbl
[25] R. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical. Phys. 9 (1968), 1202–1204. | MR | Zbl
[26] P. Olver, Applications of Lie groups to differential equations, Springer, 1997. | MR | Zbl
[27] A. Sjöberg, On the Korteweg-de Vries equation: existence and uniqueness, J. Math. Anal. Appl. 29 (1970), 569–579. | MR | Zbl
[28] H. Takaoka, Y. Tsutsumi, Well-posedness of the Cauchy Problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 2004, no. 56, 3009–3040. | MR | Zbl
[29] T. Tao, Multilinear weighted convolution of functions, and applications to non-linear dispersive equations, Amer. J. Math. 123 (2001), 839–908. | MR | Zbl
[30] T. Tao, Global regularity of wave maps I. Small critical Sobolev norm in high dimension, IMRN 7 (2001), 299–328. | MR | Zbl
[31] T. Tao, Global regularity of wave maps II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443–544. | MR | Zbl
[32] V.E. Zakharov, L.D. Faddeev, The Korteweg-de Vries equation is a completely integrable Hamiltonian System, Funkz. Anal. Priloz. 5 (1971), no. 4, 18–27. | MR | Zbl
Cité par Sources :