Nous montrons deux résultats d’approximation de dimension finie et une propriété « nonsqueezing » symplectique pour le flot Korteweg-de Vries (KdV) sur le cercle
We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle
@incollection{JEDP_2005____A14_0, author = {Colliander, J. and Keel, M. and Staffilani, G. and Takaoka, H. and Tao, T.}, title = {Notes on symplectic non-squeezing of the {KdV} flow}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {14}, pages = {1--15}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2005}, doi = {10.5802/jedp.25}, mrnumber = {2352781}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jedp.25/} }
TY - JOUR AU - Colliander, J. AU - Keel, M. AU - Staffilani, G. AU - Takaoka, H. AU - Tao, T. TI - Notes on symplectic non-squeezing of the KdV flow JO - Journées équations aux dérivées partielles PY - 2005 SP - 1 EP - 15 PB - Groupement de recherche 2434 du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.25/ DO - 10.5802/jedp.25 LA - en ID - JEDP_2005____A14_0 ER -
%0 Journal Article %A Colliander, J. %A Keel, M. %A Staffilani, G. %A Takaoka, H. %A Tao, T. %T Notes on symplectic non-squeezing of the KdV flow %J Journées équations aux dérivées partielles %D 2005 %P 1-15 %I Groupement de recherche 2434 du CNRS %U https://www.numdam.org/articles/10.5802/jedp.25/ %R 10.5802/jedp.25 %G en %F JEDP_2005____A14_0
Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Notes on symplectic non-squeezing of the KdV flow. Journées équations aux dérivées partielles (2005), article no. 14, 15 p. doi : 10.5802/jedp.25. https://www.numdam.org/articles/10.5802/jedp.25/
[1] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II, Geometric and Funct. Anal. 3 (1993), 209-262. | MR | Zbl
[2] J. Bourgain, Aspects of longtime behaviour of solutions of nonlinear Hamiltonian evolution equations, GAFA 5 (1995), 105–140. | MR | Zbl
[3] J. Bourgain, Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties, Int. Math. Res. Notices, 1994, no. 2, (1994), 79–90. | MR | Zbl
[4] J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), 115-159. | MR | Zbl
[5] J. Bourgain, Global solutions of nonlinear Schrödinger equations, AMS Publications, 1999. | MR | Zbl
[6] M. Christ, J. Colliander, T. Tao, Illposedness for canonical defocussing equations below the endpoint regularity, to appear.
[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness result for KdV in Sobolev spaces of negative index, Elec. J. Diff. Eq. 2001 (2001) No 26, 1–7. | MR | Zbl
[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for periodic and non-periodic KdV and mKdV on
[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Multilinear estimates for periodic KdV equations, and applications, Journ. Funct. Analy. 211 (2004), no. 1, 173–218. | MR | Zbl
[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, , preprint (2004).
[11] J. Colliander, G. Staffilani, H. Takaoka, Global well-posedness of the KdV equation below
[12] L. Dickey, Soliton equations and Hamiltonian systems, World Scientific, 1991. | MR | Zbl
[13] C.S. Gardner, Korteweg-de Vries equation and generalizations IV, J. Math. Phys. 12 (1971), no. 8, 1548–1551. | MR | Zbl
[14] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. math., 82 (1985), 307–347. | MR | Zbl
[15] H. Hofer, E. Zehnder, A new capacity for symplectic manifolds., in Analysis et cetera, Academic Press (1990), 405–428. Edited by P. Rabinowitz and E. Zehnder. | MR | Zbl
[16] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Verlag, 1994. | MR | Zbl
[17] T. Kappeler, P. Topalov, Global well-posedness of KdV in
[18] T. Kappeler, P. Topalov, Global fold structure of the Miura map on
[19] C. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. | MR | Zbl
[20] C. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no 3, 617–633.. | MR | Zbl
[21] C. Kenig, G. Ponce, L.Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. | MR | Zbl
[22] S. Kuksin, Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE’s, CMP 167 (1995), 521–552. | MR | Zbl
[23] S. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Its Applications, 19, Oxford Univ. Press, 2000. | MR | Zbl
[24] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), no. 5, 1156–1162. | MR | Zbl
[25] R. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical. Phys. 9 (1968), 1202–1204. | MR | Zbl
[26] P. Olver, Applications of Lie groups to differential equations, Springer, 1997. | MR | Zbl
[27] A. Sjöberg, On the Korteweg-de Vries equation: existence and uniqueness, J. Math. Anal. Appl. 29 (1970), 569–579. | MR | Zbl
[28] H. Takaoka, Y. Tsutsumi, Well-posedness of the Cauchy Problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 2004, no. 56, 3009–3040. | MR | Zbl
[29] T. Tao, Multilinear weighted convolution of
[30] T. Tao, Global regularity of wave maps I. Small critical Sobolev norm in high dimension, IMRN 7 (2001), 299–328. | MR | Zbl
[31] T. Tao, Global regularity of wave maps II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443–544. | MR | Zbl
[32] V.E. Zakharov, L.D. Faddeev, The Korteweg-de Vries equation is a completely integrable Hamiltonian System, Funkz. Anal. Priloz. 5 (1971), no. 4, 18–27. | MR | Zbl
Cité par Sources :