Global time estimates of norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.
Mots-clés : hyperbolic equations, time decay, Strichartz estimates, Fokker-Planck equation
@incollection{JEDP_2005____A12_0, author = {Ruzhansky, Michael and Smith, James}, title = {Global time estimates for solutions to equations of dissipative type}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {12}, pages = {1--29}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2005}, doi = {10.5802/jedp.23}, mrnumber = {2352779}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.23/} }
TY - JOUR AU - Ruzhansky, Michael AU - Smith, James TI - Global time estimates for solutions to equations of dissipative type JO - Journées équations aux dérivées partielles PY - 2005 SP - 1 EP - 29 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.23/ DO - 10.5802/jedp.23 LA - en ID - JEDP_2005____A12_0 ER -
%0 Journal Article %A Ruzhansky, Michael %A Smith, James %T Global time estimates for solutions to equations of dissipative type %J Journées équations aux dérivées partielles %D 2005 %P 1-29 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.23/ %R 10.5802/jedp.23 %G en %F JEDP_2005____A12_0
Ruzhansky, Michael; Smith, James. Global time estimates for solutions to equations of dissipative type. Journées équations aux dérivées partielles (2005), article no. 12, 29 p. doi : 10.5802/jedp.23. http://www.numdam.org/articles/10.5802/jedp.23/
[Bre75] Brenner, P., On estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251–254. | MR | Zbl
[Bre77] Brenner, P., -estimates for Fourier integral operators related to hyperbolic equations, Math. Z. 152 (1977), no. 3, 273–286. | MR | Zbl
[Eva98] Evans, L. C., Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. | MR | Zbl
[GKZ94] Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994. | MR | Zbl
[HR03] Hirosawa, F., Reissig, M., From wave to Klein-Gordon type decay rates, Nonlinear hyperbolic equations, spectral theory, and wavelet transformations, 95–155, Oper. Theory Adv. Appl., 145, Birkhäuser, Basel, 2003. | MR | Zbl
[Hör97] Hörmander, L., Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin), vol. 26, Springer-Verlag, Berlin, 1997. | MR | Zbl
[Kli67] Klinger, A., The Vandermonde matrix, Amer. Math. Monthly 74 (1967), 571–574. | MR | Zbl
[Lit73] Littman, W., -estimates for singular integral operators arising from hyperbolic equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc., Providence, R.I., 1973, pp. 479–481. | MR | Zbl
[Mat76] Matsumura, A., On the asymptotic behaviour of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., Kyoto Univ. 12 (1976), no. 1, 169–189. | MR | Zbl
[Pec76] Pecher, H., -Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Z. 150 (1976), no. 2, 159–183. | EuDML | MR | Zbl
[Rac92] Racke, R., Lectures on nonlinear evolution equations: Initial value problems, Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992. | MR | Zbl
[Ruzh00] Ruzhansky, M., Singularities of affine fibrations in the regularity theory of Fourier integral operators, Russian Math. Surveys, 55 (2000), 99–170. | MR | Zbl
[Str70a] Strichartz, R. S., Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (1970), 461–471. | MR | Zbl
[Str70b] Strichartz, R. S., A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218–235. | MR | Zbl
[Sug94] Sugimoto, M., A priori estimates for higher order hyperbolic equations, Math. Z. 215 (1994), no. 4, 519–531. | EuDML | MR | Zbl
[Sug96] Sugimoto, M., Estimates for hyperbolic equations with non-convex characteristics, Math. Z. 222 (1996), no. 4, 521–531. | EuDML | MR | Zbl
[Sug98] Sugimoto, M., Estimates for hyperbolic equations of space dimension 3, J. Funct. Anal. 160 (1998), no. 2, 382–407. | MR | Zbl
[VR03] Volevich, L. R. and Radkevich, E. V., Uniform estimates of solutions of the Cauchy problem for hyperbolic equations with a small parameter multiplying higher derivatives, Diff. Eq. 39 (2003), 521–535. | MR | Zbl
[VR04] Volevich, L. R. and Radkevich, E. V., Stable pencils of hyperbolic polynomials and the Cauchy problem for hyperbolic equations with a small parameter at the highest derivatives, Trans. Moscow Math. Soc. 65 (2004), 63–104. | MR
[vW71] von Wahl, W., -decay rates for homogeneous wave-equations, Math. Z. 120 (1971), 93–106. | EuDML | MR | Zbl
Cité par Sources :