The Calderón problem with partial data
Journées équations aux dérivées partielles (2004), article no. 9, 9 p.

Nous décrivons un travail avec C.E. Kenig and G. Uhlmann [9] dans lequel nous améliorons un résultat de Bukhgeim and Uhlmann [1], en montrant qu’en dimension n3, la connaissance des données de Cauchy pour l’équation de Schrödinger sur des sous-ensembles possiblement très petits du bord détermine le potential de manière unique. Nous suivons la stratégie générale de [1] mais nous utilisons un ensemble plus riche de solutions du problème de Dirichlet.

We describe a joint work with C.E. Kenig and G. Uhlmann [9] where we improve an earlier result by Bukhgeim and Uhlmann [1], by showing that in dimension n3, the knowledge of the Cauchy data for the Schrödinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem.

DOI : 10.5802/jedp.9
Classification : 35R30
Mots clés : Dirichlet to Neumann map, Carleman estimates, analytic microlocal analysis
Sjöstrand, Johannes 1

1 CMLS, École Polytechnique, F-91128 Palaiseau cedex (UMR 7640, CNRS)
@article{JEDP_2004____A9_0,
     author = {Sj\"ostrand, Johannes},
     title = {The {Calder\'on} problem with partial data},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {9},
     pages = {1--9},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2004},
     doi = {10.5802/jedp.9},
     mrnumber = {2135364},
     zbl = {1152.35518},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.9/}
}
TY  - JOUR
AU  - Sjöstrand, Johannes
TI  - The Calderón problem with partial data
JO  - Journées équations aux dérivées partielles
PY  - 2004
SP  - 1
EP  - 9
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.9/
DO  - 10.5802/jedp.9
LA  - en
ID  - JEDP_2004____A9_0
ER  - 
%0 Journal Article
%A Sjöstrand, Johannes
%T The Calderón problem with partial data
%J Journées équations aux dérivées partielles
%D 2004
%P 1-9
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.9/
%R 10.5802/jedp.9
%G en
%F JEDP_2004____A9_0
Sjöstrand, Johannes. The Calderón problem with partial data. Journées équations aux dérivées partielles (2004), article  no. 9, 9 p. doi : 10.5802/jedp.9. http://www.numdam.org/articles/10.5802/jedp.9/

[1] A. L. Bukhgeim, G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. PDE, 27(3,4)(2002), 653–668. | MR | Zbl

[2] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonances au voisinage du réel, Acta Math. 180(1)(1998), 1–29. | MR | Zbl

[3] A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, (1980), 65-73. | MR

[4] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999. | MR | Zbl

[5] J.J. Duistermaat, L. Hörmander, Fourier integral operators II, Acta Mathematica 128(1972), 183-269. | MR | Zbl

[6] A. Greenleaf and G. Uhlmann, Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform, Duke Math. J. 108(2001), 599-617. | MR | Zbl

[7] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24(1971), 671–704. | MR | Zbl

[8] H. Isozaki and G. Uhlmann, Hyperbolic geometry and the Dirichlet-to-Neumann map, Advances in Math., to appear.

[9] C.E. Kenig, J. Sjöstrand, G. Uhlmann, The Calderón problem with partial data, preprint http://xxx.lanl.gov/abs/math.AP/0405486 .

[10] G. Lebeau, L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. P.D.E. 20(1-2)(1995), 335–356. | MR | Zbl

[11] R. Novikov, Multidimensional inverse spectral problems for the equation -Δψ+(v(x)-Eu(x))ψ=0, Funkt. An. Ego Pril. 22(4)(1988), 11–12, and Funct. An. and its Appl., 22(4)(1988), 263–272. | MR | Zbl

[12] M. Sato, T. Kawai, M. Kashiwara, Microfunctions and pseudodifferential equations, Springer Lecture Notes in Math. 287 | MR | Zbl

[13] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982). | Numdam | MR | Zbl

[14] J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125(1987), 153–169. | MR | Zbl

[15] G. Uhlmann, Developments in inverse problems since Calderón’s foundational paper, Chapter 19 in “Harmonic Analysis and Partial Differential Equations", University of Chicago Press (1999), 295-345, edited by M. Christ, C. Kenig and C. Sadosky. | MR | Zbl

Cité par Sources :