@incollection{JEDP_2004____A7_0, author = {Kamotski, V. and Lebeau, G.}, title = {On {2D} {Rayleigh-Taylor} instabilities}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, pages = {1--10}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2004}, doi = {10.5802/jedp.7}, zbl = {02161533}, mrnumber = {2135362}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.7/} }
TY - JOUR AU - Kamotski, V. AU - Lebeau, G. TI - On 2D Rayleigh-Taylor instabilities JO - Journées équations aux dérivées partielles PY - 2004 SP - 1 EP - 10 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.7/ DO - 10.5802/jedp.7 LA - en ID - JEDP_2004____A7_0 ER -
Kamotski, V.; Lebeau, G. On 2D Rayleigh-Taylor instabilities. Journées équations aux dérivées partielles (2004), article no. 7, 10 p. doi : 10.5802/jedp.7. http://www.numdam.org/articles/10.5802/jedp.7/
[Bon81] J.-M. Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ec. Norm. Sup.,IV série, 14:209–246, 1981. | Numdam | MR | Zbl
[Leb02] G. Lebeau. Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler 2d. ESAIM: COCV, 08:801–825, 2002. | Numdam | MR | Zbl
[Wu] Sijue Wu Recent progress in mathematical analysis of vortex sheets. Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), 233–242, Higher Ed. Press, Beijing, 2002. | MR | Zbl
[LK04] G. Lebeau. and V. Kamotski On 2D Rayleigh-Taylor instabilities. to appear in Asymptotic Analysis , 2004 | Zbl
[SS85] C. Sulem and P.L. Sulem. Finite time analyticity for the two- and three-dimensional Rayleigh- Taylor instability. Trans. Am. Math. Soc., 287(1):127–160, 1985. | MR | Zbl
[SSBF81] C. Sulem, P.L. Sulem, C. Bardos, and U. Frisch. Finite time analyticity for the two and three dimensional Kelvin-Helhmoltz instability. Comm. in Math. Phys., 80:485–516, 1981. | MR | Zbl
[Nis77] T. Nishida. A note on a theorem of Nirenberg. J. Differ. Geom., 12:629–633, 1977. | MR | Zbl
Cité par Sources :