We consider a rotating fluid in a domain with rough horizontal boundaries. The Rossby number, kinematic viscosity and roughness are supposed of characteristic size . We prove a convergence theorem on solutions of Navier-Stokes Coriolis equations, as goes to zero, in the well prepared case. We show in particular that the limit system is a two-dimensional Euler equation with a nonlinear damping term due to boundary layers. We thus generalize the results obtained on flat boundaries with the classical Ekman layers.
@incollection{JEDP_2003____A8_0, author = {G\'erard-Varet, David}, title = {Convergence of the rotating fluids system in a domain with rough boundaries}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {8}, pages = {1--15}, publisher = {Universit\'e de Nantes}, year = {2003}, doi = {10.5802/jedp.622}, mrnumber = {2050594}, zbl = {02079443}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.622/} }
TY - JOUR AU - Gérard-Varet, David TI - Convergence of the rotating fluids system in a domain with rough boundaries JO - Journées équations aux dérivées partielles PY - 2003 SP - 1 EP - 15 PB - Université de Nantes UR - http://www.numdam.org/articles/10.5802/jedp.622/ DO - 10.5802/jedp.622 LA - en ID - JEDP_2003____A8_0 ER -
%0 Journal Article %A Gérard-Varet, David %T Convergence of the rotating fluids system in a domain with rough boundaries %J Journées équations aux dérivées partielles %D 2003 %P 1-15 %I Université de Nantes %U http://www.numdam.org/articles/10.5802/jedp.622/ %R 10.5802/jedp.622 %G en %F JEDP_2003____A8_0
Gérard-Varet, David. Convergence of the rotating fluids system in a domain with rough boundaries. Journées équations aux dérivées partielles (2003), article no. 8, 15 p. doi : 10.5802/jedp.622. http://www.numdam.org/articles/10.5802/jedp.622/
[1] Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147, 1 (1998), 187-218. | MR | Zbl
, , and[2] Effect of rugosity on a flow governed by navier-stokes equations. Quarterly Appl. Math 59, 4 (2001), 769-785. | MR | Zbl
, , , and[3]
, and Rotating fluids in a cylinder. Prepublication UMPA 317, 2003.[4] Perfect incompressible fluids, vol. 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. | MR | Zbl
[5] Ekman boundary layers in rotating fluids. ESAIM Controle optimal et calcul des variations (2002). | EuDML | Numdam | MR | Zbl
, , and[6] Rotating fluid at high Rossby number driven by a surface stress: existence and convergence. Adv. Differential Equations 2, 5 (1997), 715-751. | MR | Zbl
and[7] Stability of mixed Ekman-Hartmann boundary layers. Nonlinearity 12, 2 (1999), 181-199. | MR | Zbl
, , and[8] Derivation of quasi-geostrophic potential vorticity equations. Adv. Differential Equations 3, 5 (1998), 715-752. | MR | Zbl
, and[9] Modélisation Numérique de la Dynamo Terrestre. PhD thesis, Institut de Physique du Globe de Paris, 1997.
[10] Filtration in porous media and industrial application, vol. 1734 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. Lectures from the 4th C.I.M.E. Session held in Cetraro, August 24-29, 1998, Edited by Fasano, Fondazione C.I.M.E.. [C.I.M.E. Foundation]. | MR
, and[11] An introduction to the mathematical theory of the Navier-Stokes equations. Vol. II, vol. 39 of Springer Tracts in Natural Philosophy. Springer-Verlag, New York, 1994. Nonlinear steady problems. | MR | Zbl
[12] Highly rotating fluids in rough domains. Prepublication UMPA 314, 2003. | MR
[13] A zoology of boundary layers. Revista de la Real Academia de Ciencias 96, 3 (2002), 401-411. | MR
and[14] The Theory of Rotating Fluids. Breukelen Press, 1968. | MR | Zbl
[15] Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22, 5-6 (1997), 953-975. | MR | Zbl
, and[16] On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differential Equations 170, 1 (2001), 96-122. | MR | Zbl
and[17] Mathematical Theory of Incompressible Nonviscous Fluids. Springer Verlag, 1994. | MR | Zbl
and[18] Ekman layers of rotating fluids: the case of general initial data. Comm. Pure Appl. Math. 53, 4 (2000), 432-483. | MR | Zbl
[19] On a small scale roughness of the core-mantle boundary. Earth and Plan. Science Letters 191 (2001), 49-61.
, , , and[20] Geophysical Fluid Dynamics. Springer Verlag, 1979. | Zbl
[21] Stability of large ekman layers in rotating fluids. submitted, 2003. | MR
[22] On almost rigid rotations. J. Fluid Mech. 3 (1957), 17-26. | MR | Zbl
[23] On almost rigid rotations. part2. J. Fluid Mech. 26 (1965), 131-152. | MR | Zbl
[24] Navier-Stokes Equations. North-Holland, 1985. | MR | Zbl
Cité par Sources :