I shall present some recent work in collaboration with S. Gutierrez on the characterization of all selfsimilar solutions of the binormal flow : which preserve the length parametrization. Above is a curve in , the arclength parameter, and denote the temporal variable. This flow appeared for the first time in the work of Da Rios (1906) as a crude approximation to the evolution of a vortex filament under Euler equation, and it is intimately related to the focusing cubic nonlinear Schrödinger equation through the so called Hasimoto transformation. These solutions show the formation of singularities in finite time in the shape of either just a kink (zero angular momentum) or a kink together with a logarithmic correction in the shape of a spiral (non trivial angular momentum).
@incollection{JEDP_2003____A14_0, author = {Vega, Luis}, title = {Kink solutions of the binormal flow}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {14}, pages = {1--10}, publisher = {Universit\'e de Nantes}, year = {2003}, doi = {10.5802/jedp.628}, mrnumber = {2050600}, zbl = {02079449}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.628/} }
Vega, Luis. Kink solutions of the binormal flow. Journées équations aux dérivées partielles (2003), article no. 14, 10 p. doi : 10.5802/jedp.628. http://www.numdam.org/articles/10.5802/jedp.628/
[Be] On the curvature and torsion of an isolated filament, Journal of Fluids Mechanics 22, (1965), 471. | MR | Zbl
,[Bu] A numerical study of superfluid turbulence in the Self-Induction Approximation, J. of Com. Phys. 76, (1988), 301-326. | Zbl
,[CFM] Geometric constraints on potentially singular solutions for 3-D Euler equations, Comm. P.D.E. 21, (1988), 559-571. | MR | Zbl
, , ,[DaR] On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo 22, (1906), 117. | JFM
,[GRV] Formation of singularities and self-similar vortex motion under the Localized Induction Approximation, To appear in Comm. P.D.E. . | MR | Zbl
, , ,[Ha] A soliton on a vortex filament, Journal of Fluids Mechanics, 51, (1972), 477-485. | Zbl
,[LRT] On the dynamics of a continuum spin system, Physica A 84, (1976), 577-590. | MR
, , ,[Sa] Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge Univ. Press, New York, (1992). | MR | Zbl
,Cité par Sources :